YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
RoBERTa-Base Quantized Model for Intent Classification for Banking Systems
This repository contains a fine-tuned RoBERTa-Base model for intent classification on the Banking77 dataset. The model identifies user intent from natural language queries in the context of banking services.
Model Details
- Model Architecture: RoBERTa Base
- Task: Intent Classification
- Dataset: Banking77
- Use Case: Detecting user intents in banking conversations
- Fine-tuning Framework: Hugging Face Transformers
Usage
Installation
pip install transformers torch datasets
Loading the Model
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification
import torch
from datasets import load_dataset
# Load tokenizer and model
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
model = RobertaForSequenceClassification.from_pretrained("path_to_your_fine_tuned_model")
model.eval()
# Sample input
text = "I am still waiting on my card?"
# Tokenize and predict
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
# Load label mapping from dataset
label_map = load_dataset("PolyAI/banking77")["train"].features["label"].int2str
predicted_label = label_map(predicted_class)
print(f"Predicted Intent: {predicted_label}")
Performance Metrics
- Accuracy: 0.927922
- Precision: 0.931764
- Recall: 0.927922
- F1 Score: 0.927976
Fine-Tuning Details
Dataset
The Banking77 dataset contains 13,083 labeled queries across 77 banking-related intents, including tasks like checking balances, transferring money, and reporting fraud.
Training Configuration
- Number of epochs: 5
- Batch size: 16
- Evaluation strategy: epoch
- Learning rate: 2e-5
Repository Structure
.
βββ config.json
βββ tokenizer_config.json
βββ special_tokens_map.json
βββ tokenizer.json
βββ model.safetensors # Fine-tuned RoBERTa model
βββ README.md # Documentation
Limitations
The model may not generalize well to domains outside the fine-tuning dataset.
Quantization may result in minor accuracy degradation compared to full-precision models.
Contributing
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support