YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

RoBERTa-Base Quantized Model for Intent Classification for Banking Systems

This repository contains a fine-tuned RoBERTa-Base model for intent classification on the Banking77 dataset. The model identifies user intent from natural language queries in the context of banking services.

Model Details

  • Model Architecture: RoBERTa Base
  • Task: Intent Classification
  • Dataset: Banking77
  • Use Case: Detecting user intents in banking conversations
  • Fine-tuning Framework: Hugging Face Transformers

Usage

Installation

pip install transformers torch datasets

Loading the Model

from transformers import RobertaTokenizerFast, RobertaForSequenceClassification
import torch
from datasets import load_dataset

# Load tokenizer and model
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
model = RobertaForSequenceClassification.from_pretrained("path_to_your_fine_tuned_model")
model.eval()

# Sample input
text = "I am still waiting on my card?"

# Tokenize and predict
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
    outputs = model(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()

# Load label mapping from dataset
label_map = load_dataset("PolyAI/banking77")["train"].features["label"].int2str
predicted_label = label_map(predicted_class)

print(f"Predicted Intent: {predicted_label}")

Performance Metrics

  • Accuracy: 0.927922
  • Precision: 0.931764
  • Recall: 0.927922
  • F1 Score: 0.927976

Fine-Tuning Details

Dataset

The Banking77 dataset contains 13,083 labeled queries across 77 banking-related intents, including tasks like checking balances, transferring money, and reporting fraud.

Training Configuration

  • Number of epochs: 5
  • Batch size: 16
  • Evaluation strategy: epoch
  • Learning rate: 2e-5

Repository Structure

.
β”œβ”€β”€ config.json
β”œβ”€β”€ tokenizer_config.json    
β”œβ”€β”€ special_tokens_map.json 
β”œβ”€β”€ tokenizer.json        
β”œβ”€β”€ model.safetensors       # Fine-tuned RoBERTa model
β”œβ”€β”€ README.md               # Documentation

Limitations

  • The model may not generalize well to domains outside the fine-tuning dataset.

  • Quantization may result in minor accuracy degradation compared to full-precision models.

Contributing

Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.

Downloads last month
7
Safetensors
Model size
0.1B params
Tensor type
F16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support