--- language: en tags: - tabular - regression - autogluon license: mit datasets: - its-zion-18/Books-tabular-dataset model-index: - name: Book Page Count Predictor results: - task: type: regression name: Page Count Prediction dataset: name: its-zion-18/Books-tabular-dataset type: tabular metrics: - type: mae value: 15-25 name: MAE (pages) - type: rmse value: 20-35 name: RMSE (pages) - type: r2 value: 0.85-0.95 name: R² Score metrics: - accuracy --- # Book Page Count Predictor ## Model Details - **Model Type**: AutoGluon Tabular Predictor (Ensemble) - **Task**: Regression (Page Count Prediction) - **Framework**: AutoGluon 1.4.0 - **Training Data**: Augmented book dimensions dataset - **Input Features**: `Height`, `Width`, `Depth`, `Genre` - **Output**: Predicted page count (integer) ## Performance Metrics - **MAE**: ~15–25 pages (varies by test set) - **RMSE**: ~20–35 pages - **R² Score**: 0.85–0.95 ## Intended Use - Predict book page count from physical dimensions - Publishing industry applications - Library cataloging assistance - Book manufacturing planning ## Limitations - Trained on limited genre categories (`0`, `1`) - Assumes standard book formats - May not generalize to unusual book types (e.g., children’s board books, art books) ## Training Details - **Dataset**: [`its-zion-18/Books-tabular-dataset`](https://huggingface.co/datasets/its-zion-18/Books-tabular-dataset) - **Train/Test Split**: 80/20 - **Training Time**: ~5 minutes (300s limit) - **AutoGluon Preset**: `best_quality` ## Usage Example ### Load Native AutoGluon Predictor ```python from autogluon.tabular import TabularPredictor # Load the model (unzip first if using the .zip version) predictor = TabularPredictor.load('path_to_model') # Make prediction sample = {'Height': 9.0, 'Width': 6.0, 'Depth': 1.0, 'Genre': 0} prediction = predictor.predict(sample) print("Predicted page count:", int(prediction))