| from transformers import PretrainedConfig | |
| class BertABSAConfig(PretrainedConfig): | |
| model_type = "BertABSAForSequenceClassification" | |
| def __init__(self, | |
| num_classes=3, | |
| embed_dim=768, | |
| num_layers=12, | |
| dropout_rate=0.1, | |
| fc_hidden=256, | |
| hidden_dim_lstm=128, | |
| **kwargs): | |
| super().__init__(**kwargs) | |
| self.num_classes = num_classes | |
| self.embed_dim = embed_dim | |
| self.num_layers = num_layers | |
| self.dropout_rate = dropout_rate | |
| self.fc_hidden = fc_hidden | |
| self.hidden_dim_lstm = hidden_dim_lstm | |
| self.id2label = { | |
| 0: "negative", | |
| 1: "positive", | |
| 2: "neutral", | |
| } | |
| self.label2id = { | |
| "negative": 0, | |
| "positive": 1, | |
| "neutral": 2, | |
| } | |