Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import argparse | |
| import copy | |
| import os | |
| import os.path as osp | |
| import time | |
| import warnings | |
| import click | |
| import yaml | |
| from glob import glob | |
| import torch | |
| import torch.distributed as dist | |
| from vit_utils.util import init_random_seed, set_random_seed | |
| from vit_utils.dist_util import get_dist_info, init_dist | |
| from vit_utils.logging import get_root_logger | |
| import configs.ViTPose_small_coco_256x192 as s_cfg | |
| import configs.ViTPose_base_coco_256x192 as b_cfg | |
| import configs.ViTPose_large_coco_256x192 as l_cfg | |
| import configs.ViTPose_huge_coco_256x192 as h_cfg | |
| from vit_models.model import ViTPose | |
| from datasets.COCO import COCODataset | |
| from vit_utils.train_valid_fn import train_model | |
| CUR_PATH = osp.dirname(__file__) | |
| def main(config_path, model_name): | |
| cfg = {'b':b_cfg, | |
| 's':s_cfg, | |
| 'l':l_cfg, | |
| 'h':h_cfg}.get(model_name.lower()) | |
| # Load config.yaml | |
| with open(config_path, 'r') as f: | |
| cfg_yaml = yaml.load(f, Loader=yaml.SafeLoader) | |
| for k, v in cfg_yaml.items(): | |
| if hasattr(cfg, k): | |
| raise ValueError(f"Already exists {k} in config") | |
| else: | |
| cfg.__setattr__(k, v) | |
| # set cudnn_benchmark | |
| if cfg.cudnn_benchmark: | |
| torch.backends.cudnn.benchmark = True | |
| # Set work directory (session-level) | |
| if not hasattr(cfg, 'work_dir'): | |
| cfg.__setattr__('work_dir', f"{CUR_PATH}/runs/train") | |
| if not osp.exists(cfg.work_dir): | |
| os.makedirs(cfg.work_dir) | |
| session_list = sorted(glob(f"{cfg.work_dir}/*")) | |
| if len(session_list) == 0: | |
| session = 1 | |
| else: | |
| session = int(os.path.basename(session_list[-1])) + 1 | |
| session_dir = osp.join(cfg.work_dir, str(session).zfill(3)) | |
| os.makedirs(session_dir) | |
| cfg.__setattr__('work_dir', session_dir) | |
| if cfg.autoscale_lr: | |
| # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) | |
| cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 | |
| # init distributed env first, since logger depends on the dist info. | |
| if cfg.launcher == 'none': | |
| distributed = False | |
| if len(cfg.gpu_ids) > 1: | |
| warnings.warn( | |
| f"We treat {cfg['gpu_ids']} as gpu-ids, and reset to " | |
| f"{cfg['gpu_ids'][0:1]} as gpu-ids to avoid potential error in " | |
| "non-distribute training time.") | |
| cfg.gpu_ids = cfg.gpu_ids[0:1] | |
| else: | |
| distributed = True | |
| init_dist(cfg.launcher, **cfg.dist_params) | |
| # re-set gpu_ids with distributed training mode | |
| _, world_size = get_dist_info() | |
| cfg.gpu_ids = range(world_size) | |
| # init the logger before other steps | |
| timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) | |
| log_file = osp.join(session_dir, f'{timestamp}.log') | |
| logger = get_root_logger(log_file=log_file) | |
| # init the meta dict to record some important information such as | |
| # environment info and seed, which will be logged | |
| meta = dict() | |
| # log some basic info | |
| logger.info(f'Distributed training: {distributed}') | |
| # set random seeds | |
| seed = init_random_seed(cfg.seed) | |
| logger.info(f"Set random seed to {seed}, " | |
| f"deterministic: {cfg.deterministic}") | |
| set_random_seed(seed, deterministic=cfg.deterministic) | |
| meta['seed'] = seed | |
| # Set model | |
| model = ViTPose(cfg.model) | |
| if cfg.resume_from: | |
| # Load ckpt partially | |
| ckpt_state = torch.load(cfg.resume_from)['state_dict'] | |
| ckpt_state.pop('keypoint_head.final_layer.bias') | |
| ckpt_state.pop('keypoint_head.final_layer.weight') | |
| model.load_state_dict(ckpt_state, strict=False) | |
| # freeze the backbone, leave the head to be finetuned | |
| model.backbone.frozen_stages = model.backbone.depth - 1 | |
| model.backbone.freeze_ffn = True | |
| model.backbone.freeze_attn = True | |
| model.backbone._freeze_stages() | |
| # Set dataset | |
| datasets_train = COCODataset( | |
| root_path=cfg.data_root, | |
| data_version="feet_train", | |
| is_train=True, | |
| use_gt_bboxes=True, | |
| image_width=192, | |
| image_height=256, | |
| scale=True, | |
| scale_factor=0.35, | |
| flip_prob=0.5, | |
| rotate_prob=0.5, | |
| rotation_factor=45., | |
| half_body_prob=0.3, | |
| use_different_joints_weight=True, | |
| heatmap_sigma=3, | |
| soft_nms=False | |
| ) | |
| datasets_valid = COCODataset( | |
| root_path=cfg.data_root, | |
| data_version="feet_val", | |
| is_train=False, | |
| use_gt_bboxes=True, | |
| image_width=192, | |
| image_height=256, | |
| scale=False, | |
| scale_factor=0.35, | |
| flip_prob=0.5, | |
| rotate_prob=0.5, | |
| rotation_factor=45., | |
| half_body_prob=0.3, | |
| use_different_joints_weight=True, | |
| heatmap_sigma=3, | |
| soft_nms=False | |
| ) | |
| train_model( | |
| model=model, | |
| datasets_train=datasets_train, | |
| datasets_valid=datasets_valid, | |
| cfg=cfg, | |
| distributed=distributed, | |
| validate=cfg.validate, | |
| timestamp=timestamp, | |
| meta=meta | |
| ) | |
| if __name__ == '__main__': | |
| main() | |