Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- cmd_helper.py +56 -0
- notebook_utils.py +756 -0
- pip_helper.py +10 -0
cmd_helper.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import subprocess # nosec - disable B404:import-subprocess check
|
| 3 |
+
import sys
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import platform
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def clone_repo(repo_url: str, revision: str = None, add_to_sys_path: bool = True) -> Path:
|
| 10 |
+
repo_path = Path(repo_url.split("/")[-1].replace(".git", ""))
|
| 11 |
+
|
| 12 |
+
if not repo_path.exists():
|
| 13 |
+
try:
|
| 14 |
+
subprocess.run(["git", "clone", repo_url], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
| 15 |
+
except Exception as exc:
|
| 16 |
+
print(f"Failed to clone the repository: {exc.stderr}")
|
| 17 |
+
raise
|
| 18 |
+
|
| 19 |
+
if revision:
|
| 20 |
+
subprocess.Popen(["git", "checkout", revision], cwd=str(repo_path))
|
| 21 |
+
if add_to_sys_path and str(repo_path.resolve()) not in sys.path:
|
| 22 |
+
sys.path.insert(0, str(repo_path.resolve()))
|
| 23 |
+
|
| 24 |
+
return repo_path
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def optimum_cli(model_id, output_dir, show_command=True, additional_args: dict[str, str] = None, debug_logs=False):
|
| 28 |
+
export_command = f"optimum-cli export openvino --model {model_id} {output_dir}"
|
| 29 |
+
if additional_args is not None:
|
| 30 |
+
for arg, value in additional_args.items():
|
| 31 |
+
export_command += f" --{arg}"
|
| 32 |
+
if value:
|
| 33 |
+
export_command += f" {value}"
|
| 34 |
+
|
| 35 |
+
if show_command:
|
| 36 |
+
from IPython.display import Markdown, display
|
| 37 |
+
|
| 38 |
+
display(Markdown("**Export command:**"))
|
| 39 |
+
display(Markdown(f"`{export_command}`"))
|
| 40 |
+
|
| 41 |
+
transofrmers_loglevel = None
|
| 42 |
+
if debug_logs:
|
| 43 |
+
transofrmers_loglevel = os.environ.pop("TRANSFORMERS_VERBOSITY", None)
|
| 44 |
+
os.environ["TRANSFORMERS_VERBOSITY"] = "debug"
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
subprocess.run(export_command.split(" "), shell=(platform.system() == "Windows"), check=True, capture_output=True)
|
| 48 |
+
except subprocess.CalledProcessError as exc:
|
| 49 |
+
logger = logging.getLogger()
|
| 50 |
+
logger.exception(exc.stderr)
|
| 51 |
+
if transofrmers_loglevel is not None:
|
| 52 |
+
os.environ["TRANSFORMERS_VERBOSITY"] = transofrmers_loglevel
|
| 53 |
+
raise exc
|
| 54 |
+
finally:
|
| 55 |
+
if transofrmers_loglevel is not None:
|
| 56 |
+
os.environ["TRANSFORMERS_VERBOSITY"] = transofrmers_loglevel
|
notebook_utils.py
ADDED
|
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[ ]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import platform
|
| 8 |
+
import sys
|
| 9 |
+
import threading
|
| 10 |
+
import time
|
| 11 |
+
from os import PathLike
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from typing import NamedTuple, Optional
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# ## Files
|
| 17 |
+
#
|
| 18 |
+
# Load an image, download a file, download an IR model, and create a progress bar to show download progress.
|
| 19 |
+
|
| 20 |
+
# In[ ]:
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def device_widget(default="AUTO", exclude=None, added=None, description="Device:"):
|
| 24 |
+
import openvino as ov
|
| 25 |
+
import ipywidgets as widgets
|
| 26 |
+
|
| 27 |
+
core = ov.Core()
|
| 28 |
+
|
| 29 |
+
supported_devices = core.available_devices + ["AUTO"]
|
| 30 |
+
exclude = exclude or []
|
| 31 |
+
if exclude:
|
| 32 |
+
for ex_device in exclude:
|
| 33 |
+
if ex_device in supported_devices:
|
| 34 |
+
supported_devices.remove(ex_device)
|
| 35 |
+
|
| 36 |
+
added = added or []
|
| 37 |
+
if added:
|
| 38 |
+
for add_device in added:
|
| 39 |
+
if add_device not in supported_devices:
|
| 40 |
+
supported_devices.append(add_device)
|
| 41 |
+
|
| 42 |
+
device = widgets.Dropdown(
|
| 43 |
+
options=supported_devices,
|
| 44 |
+
value=default,
|
| 45 |
+
description=description,
|
| 46 |
+
disabled=False,
|
| 47 |
+
)
|
| 48 |
+
return device
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def quantization_widget(default=True):
|
| 52 |
+
import ipywidgets as widgets
|
| 53 |
+
|
| 54 |
+
to_quantize = widgets.Checkbox(
|
| 55 |
+
value=default,
|
| 56 |
+
description="Quantization",
|
| 57 |
+
disabled=False,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
return to_quantize
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def pip_install(*args):
|
| 64 |
+
import subprocess # nosec - disable B404:import-subprocess check
|
| 65 |
+
|
| 66 |
+
cli_args = []
|
| 67 |
+
for arg in args:
|
| 68 |
+
cli_args.extend(str(arg).split(" "))
|
| 69 |
+
subprocess.run([sys.executable, "-m", "pip", "install", *cli_args], shell=(platform.system() == "Windows"), check=True)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def load_image(name: str, url: str = None):
|
| 73 |
+
"""
|
| 74 |
+
Loads an image by `url` and returns it as BGR numpy array. The image is
|
| 75 |
+
stored to the filesystem with name `name`. If the image file already exists
|
| 76 |
+
loads the local image.
|
| 77 |
+
|
| 78 |
+
:param name: Local path name of the image.
|
| 79 |
+
:param url: url to the image
|
| 80 |
+
:return: image as BGR numpy array
|
| 81 |
+
"""
|
| 82 |
+
import cv2
|
| 83 |
+
import numpy as np
|
| 84 |
+
import requests
|
| 85 |
+
|
| 86 |
+
if not Path(name).exists():
|
| 87 |
+
# Set User-Agent to Mozilla because some websites block
|
| 88 |
+
# requests with User-Agent Python
|
| 89 |
+
response = requests.get(url, headers={"User-Agent": "Mozilla/5.0"})
|
| 90 |
+
array = np.asarray(bytearray(response.content), dtype="uint8")
|
| 91 |
+
image = cv2.imdecode(array, -1) # Loads the image as BGR
|
| 92 |
+
cv2.imwrite(name, image)
|
| 93 |
+
else:
|
| 94 |
+
image = cv2.imread(name)
|
| 95 |
+
|
| 96 |
+
return image
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def download_file(
|
| 100 |
+
url: PathLike,
|
| 101 |
+
filename: PathLike = None,
|
| 102 |
+
directory: PathLike = None,
|
| 103 |
+
show_progress: bool = True,
|
| 104 |
+
) -> PathLike:
|
| 105 |
+
"""
|
| 106 |
+
Download a file from a url and save it to the local filesystem. The file is saved to the
|
| 107 |
+
current directory by default, or to `directory` if specified. If a filename is not given,
|
| 108 |
+
the filename of the URL will be used.
|
| 109 |
+
|
| 110 |
+
:param url: URL that points to the file to download
|
| 111 |
+
:param filename: Name of the local file to save. Should point to the name of the file only,
|
| 112 |
+
not the full path. If None the filename from the url will be used
|
| 113 |
+
:param directory: Directory to save the file to. Will be created if it doesn't exist
|
| 114 |
+
If None the file will be saved to the current working directory
|
| 115 |
+
:param show_progress: If True, show an TQDM ProgressBar
|
| 116 |
+
:param silent: If True, do not print a message if the file already exists
|
| 117 |
+
:param timeout: Number of seconds before cancelling the connection attempt
|
| 118 |
+
:return: path to downloaded file
|
| 119 |
+
"""
|
| 120 |
+
from tqdm.notebook import tqdm_notebook
|
| 121 |
+
import requests
|
| 122 |
+
import urllib.parse
|
| 123 |
+
|
| 124 |
+
filename = filename or Path(urllib.parse.urlparse(url).path).name
|
| 125 |
+
chunk_size = 16384 # make chunks bigger so that not too many updates are triggered for Jupyter front-end
|
| 126 |
+
|
| 127 |
+
filename = Path(filename)
|
| 128 |
+
if len(filename.parts) > 1:
|
| 129 |
+
raise ValueError(
|
| 130 |
+
"`filename` should refer to the name of the file, excluding the directory. "
|
| 131 |
+
"Use the `directory` parameter to specify a target directory for the downloaded file."
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
filepath = Path(directory) / filename if directory is not None else filename
|
| 135 |
+
if filepath.exists():
|
| 136 |
+
return filepath.resolve()
|
| 137 |
+
|
| 138 |
+
# create the directory if it does not exist, and add the directory to the filename
|
| 139 |
+
if directory is not None:
|
| 140 |
+
Path(directory).mkdir(parents=True, exist_ok=True)
|
| 141 |
+
|
| 142 |
+
try:
|
| 143 |
+
response = requests.get(url=url, headers={"User-agent": "Mozilla/5.0"}, stream=True)
|
| 144 |
+
response.raise_for_status()
|
| 145 |
+
except (
|
| 146 |
+
requests.exceptions.HTTPError
|
| 147 |
+
) as error: # For error associated with not-200 codes. Will output something like: "404 Client Error: Not Found for url: {url}"
|
| 148 |
+
raise Exception(error) from None
|
| 149 |
+
except requests.exceptions.Timeout:
|
| 150 |
+
raise Exception(
|
| 151 |
+
"Connection timed out. If you access the internet through a proxy server, please "
|
| 152 |
+
"make sure the proxy is set in the shell from where you launched Jupyter."
|
| 153 |
+
) from None
|
| 154 |
+
except requests.exceptions.RequestException as error:
|
| 155 |
+
raise Exception(f"File downloading failed with error: {error}") from None
|
| 156 |
+
|
| 157 |
+
# download the file if it does not exist
|
| 158 |
+
filesize = int(response.headers.get("Content-length", 0))
|
| 159 |
+
if not filepath.exists():
|
| 160 |
+
with tqdm_notebook(
|
| 161 |
+
total=filesize,
|
| 162 |
+
unit="B",
|
| 163 |
+
unit_scale=True,
|
| 164 |
+
unit_divisor=1024,
|
| 165 |
+
desc=str(filename),
|
| 166 |
+
disable=not show_progress,
|
| 167 |
+
) as progress_bar:
|
| 168 |
+
with open(filepath, "wb") as file_object:
|
| 169 |
+
for chunk in response.iter_content(chunk_size):
|
| 170 |
+
file_object.write(chunk)
|
| 171 |
+
progress_bar.update(len(chunk))
|
| 172 |
+
progress_bar.refresh()
|
| 173 |
+
else:
|
| 174 |
+
print(f"'{filepath}' already exists.")
|
| 175 |
+
|
| 176 |
+
response.close()
|
| 177 |
+
|
| 178 |
+
return filepath.resolve()
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def download_ir_model(model_xml_url: str, destination_folder: PathLike = None) -> PathLike:
|
| 182 |
+
"""
|
| 183 |
+
Download IR model from `model_xml_url`. Downloads model xml and bin file; the weights file is
|
| 184 |
+
assumed to exist at the same location and name as model_xml_url with a ".bin" extension.
|
| 185 |
+
|
| 186 |
+
:param model_xml_url: URL to model xml file to download
|
| 187 |
+
:param destination_folder: Directory where downloaded model xml and bin are saved. If None, model
|
| 188 |
+
files are saved to the current directory
|
| 189 |
+
:return: path to downloaded xml model file
|
| 190 |
+
"""
|
| 191 |
+
model_bin_url = model_xml_url[:-4] + ".bin"
|
| 192 |
+
model_xml_path = download_file(model_xml_url, directory=destination_folder, show_progress=False)
|
| 193 |
+
download_file(model_bin_url, directory=destination_folder)
|
| 194 |
+
return model_xml_path
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# ## Images
|
| 198 |
+
|
| 199 |
+
# ### Convert Pixel Data
|
| 200 |
+
#
|
| 201 |
+
# Normalize image pixel values between 0 and 1, and convert images to RGB and BGR.
|
| 202 |
+
|
| 203 |
+
# In[ ]:
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def normalize_minmax(data):
|
| 207 |
+
"""
|
| 208 |
+
Normalizes the values in `data` between 0 and 1
|
| 209 |
+
"""
|
| 210 |
+
if data.max() == data.min():
|
| 211 |
+
raise ValueError("Normalization is not possible because all elements of" f"`data` have the same value: {data.max()}.")
|
| 212 |
+
return (data - data.min()) / (data.max() - data.min())
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def to_rgb(image_data):
|
| 216 |
+
"""
|
| 217 |
+
Convert image_data from BGR to RGB
|
| 218 |
+
"""
|
| 219 |
+
import cv2
|
| 220 |
+
|
| 221 |
+
return cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def to_bgr(image_data):
|
| 225 |
+
"""
|
| 226 |
+
Convert image_data from RGB to BGR
|
| 227 |
+
"""
|
| 228 |
+
import cv2
|
| 229 |
+
|
| 230 |
+
return cv2.cvtColor(image_data, cv2.COLOR_RGB2BGR)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
# ## Videos
|
| 234 |
+
|
| 235 |
+
# ### Video Player
|
| 236 |
+
#
|
| 237 |
+
# Custom video player to fulfill FPS requirements. You can set target FPS and output size, flip the video horizontally or skip first N frames.
|
| 238 |
+
|
| 239 |
+
# In[ ]:
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class VideoPlayer:
|
| 243 |
+
"""
|
| 244 |
+
Custom video player to fulfill FPS requirements. You can set target FPS and output size,
|
| 245 |
+
flip the video horizontally or skip first N frames.
|
| 246 |
+
|
| 247 |
+
:param source: Video source. It could be either camera device or video file.
|
| 248 |
+
:param size: Output frame size.
|
| 249 |
+
:param flip: Flip source horizontally.
|
| 250 |
+
:param fps: Target FPS.
|
| 251 |
+
:param skip_first_frames: Skip first N frames.
|
| 252 |
+
"""
|
| 253 |
+
|
| 254 |
+
def __init__(self, source, size=None, flip=False, fps=None, skip_first_frames=0, width=1280, height=720):
|
| 255 |
+
import cv2
|
| 256 |
+
|
| 257 |
+
self.cv2 = cv2 # This is done to access the package in class methods
|
| 258 |
+
self.__cap = cv2.VideoCapture(source)
|
| 259 |
+
# try HD by default to get better video quality
|
| 260 |
+
self.__cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
|
| 261 |
+
self.__cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
| 262 |
+
|
| 263 |
+
if not self.__cap.isOpened():
|
| 264 |
+
raise RuntimeError(f"Cannot open {'camera' if isinstance(source, int) else ''} {source}")
|
| 265 |
+
# skip first N frames
|
| 266 |
+
self.__cap.set(cv2.CAP_PROP_POS_FRAMES, skip_first_frames)
|
| 267 |
+
# fps of input file
|
| 268 |
+
self.__input_fps = self.__cap.get(cv2.CAP_PROP_FPS)
|
| 269 |
+
if self.__input_fps <= 0:
|
| 270 |
+
self.__input_fps = 60
|
| 271 |
+
# target fps given by user
|
| 272 |
+
self.__output_fps = fps if fps is not None else self.__input_fps
|
| 273 |
+
self.__flip = flip
|
| 274 |
+
self.__size = None
|
| 275 |
+
self.__interpolation = None
|
| 276 |
+
if size is not None:
|
| 277 |
+
self.__size = size
|
| 278 |
+
# AREA better for shrinking, LINEAR better for enlarging
|
| 279 |
+
self.__interpolation = cv2.INTER_AREA if size[0] < self.__cap.get(cv2.CAP_PROP_FRAME_WIDTH) else cv2.INTER_LINEAR
|
| 280 |
+
# first frame
|
| 281 |
+
_, self.__frame = self.__cap.read()
|
| 282 |
+
self.__lock = threading.Lock()
|
| 283 |
+
self.__thread = None
|
| 284 |
+
self.__stop = False
|
| 285 |
+
|
| 286 |
+
"""
|
| 287 |
+
Start playing.
|
| 288 |
+
"""
|
| 289 |
+
|
| 290 |
+
def start(self):
|
| 291 |
+
self.__stop = False
|
| 292 |
+
self.__thread = threading.Thread(target=self.__run, daemon=True)
|
| 293 |
+
self.__thread.start()
|
| 294 |
+
|
| 295 |
+
"""
|
| 296 |
+
Stop playing and release resources.
|
| 297 |
+
"""
|
| 298 |
+
|
| 299 |
+
def stop(self):
|
| 300 |
+
self.__stop = True
|
| 301 |
+
if self.__thread is not None:
|
| 302 |
+
self.__thread.join()
|
| 303 |
+
self.__cap.release()
|
| 304 |
+
|
| 305 |
+
def __run(self):
|
| 306 |
+
prev_time = 0
|
| 307 |
+
while not self.__stop:
|
| 308 |
+
t1 = time.time()
|
| 309 |
+
ret, frame = self.__cap.read()
|
| 310 |
+
if not ret:
|
| 311 |
+
break
|
| 312 |
+
|
| 313 |
+
# fulfill target fps
|
| 314 |
+
if 1 / self.__output_fps < time.time() - prev_time:
|
| 315 |
+
prev_time = time.time()
|
| 316 |
+
# replace by current frame
|
| 317 |
+
with self.__lock:
|
| 318 |
+
self.__frame = frame
|
| 319 |
+
|
| 320 |
+
t2 = time.time()
|
| 321 |
+
# time to wait [s] to fulfill input fps
|
| 322 |
+
wait_time = 1 / self.__input_fps - (t2 - t1)
|
| 323 |
+
# wait until
|
| 324 |
+
time.sleep(max(0, wait_time))
|
| 325 |
+
|
| 326 |
+
self.__frame = None
|
| 327 |
+
|
| 328 |
+
"""
|
| 329 |
+
Get current frame.
|
| 330 |
+
"""
|
| 331 |
+
|
| 332 |
+
def next(self):
|
| 333 |
+
import cv2
|
| 334 |
+
|
| 335 |
+
with self.__lock:
|
| 336 |
+
if self.__frame is None:
|
| 337 |
+
return None
|
| 338 |
+
# need to copy frame, because can be cached and reused if fps is low
|
| 339 |
+
frame = self.__frame.copy()
|
| 340 |
+
if self.__size is not None:
|
| 341 |
+
frame = self.cv2.resize(frame, self.__size, interpolation=self.__interpolation)
|
| 342 |
+
if self.__flip:
|
| 343 |
+
frame = self.cv2.flip(frame, 1)
|
| 344 |
+
return frame
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
# ## Visualization
|
| 348 |
+
|
| 349 |
+
# ### Segmentation
|
| 350 |
+
#
|
| 351 |
+
# Define a SegmentationMap NamedTuple that keeps the labels and colormap for a segmentation project/dataset. Create CityScapesSegmentation and BinarySegmentation SegmentationMaps. Create a function to convert a segmentation map to an RGB image with a colormap, and to show the segmentation result as an overlay over the original image.
|
| 352 |
+
|
| 353 |
+
# In[ ]:
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class Label(NamedTuple):
|
| 357 |
+
index: int
|
| 358 |
+
color: tuple
|
| 359 |
+
name: Optional[str] = None
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
# In[ ]:
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
class SegmentationMap(NamedTuple):
|
| 366 |
+
labels: list
|
| 367 |
+
|
| 368 |
+
def get_colormap(self):
|
| 369 |
+
import numpy as np
|
| 370 |
+
|
| 371 |
+
return np.array([label.color for label in self.labels])
|
| 372 |
+
|
| 373 |
+
def get_labels(self):
|
| 374 |
+
labelnames = [label.name for label in self.labels]
|
| 375 |
+
if any(labelnames):
|
| 376 |
+
return labelnames
|
| 377 |
+
else:
|
| 378 |
+
return None
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# In[ ]:
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
cityscape_labels = [
|
| 385 |
+
Label(index=0, color=(128, 64, 128), name="road"),
|
| 386 |
+
Label(index=1, color=(244, 35, 232), name="sidewalk"),
|
| 387 |
+
Label(index=2, color=(70, 70, 70), name="building"),
|
| 388 |
+
Label(index=3, color=(102, 102, 156), name="wall"),
|
| 389 |
+
Label(index=4, color=(190, 153, 153), name="fence"),
|
| 390 |
+
Label(index=5, color=(153, 153, 153), name="pole"),
|
| 391 |
+
Label(index=6, color=(250, 170, 30), name="traffic light"),
|
| 392 |
+
Label(index=7, color=(220, 220, 0), name="traffic sign"),
|
| 393 |
+
Label(index=8, color=(107, 142, 35), name="vegetation"),
|
| 394 |
+
Label(index=9, color=(152, 251, 152), name="terrain"),
|
| 395 |
+
Label(index=10, color=(70, 130, 180), name="sky"),
|
| 396 |
+
Label(index=11, color=(220, 20, 60), name="person"),
|
| 397 |
+
Label(index=12, color=(255, 0, 0), name="rider"),
|
| 398 |
+
Label(index=13, color=(0, 0, 142), name="car"),
|
| 399 |
+
Label(index=14, color=(0, 0, 70), name="truck"),
|
| 400 |
+
Label(index=15, color=(0, 60, 100), name="bus"),
|
| 401 |
+
Label(index=16, color=(0, 80, 100), name="train"),
|
| 402 |
+
Label(index=17, color=(0, 0, 230), name="motorcycle"),
|
| 403 |
+
Label(index=18, color=(119, 11, 32), name="bicycle"),
|
| 404 |
+
Label(index=19, color=(255, 255, 255), name="background"),
|
| 405 |
+
]
|
| 406 |
+
|
| 407 |
+
CityScapesSegmentation = SegmentationMap(cityscape_labels)
|
| 408 |
+
|
| 409 |
+
binary_labels = [
|
| 410 |
+
Label(index=0, color=(255, 255, 255), name="background"),
|
| 411 |
+
Label(index=1, color=(0, 0, 0), name="foreground"),
|
| 412 |
+
]
|
| 413 |
+
|
| 414 |
+
BinarySegmentation = SegmentationMap(binary_labels)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# In[ ]:
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
def segmentation_map_to_image(result, colormap, remove_holes: bool = False):
|
| 421 |
+
"""
|
| 422 |
+
Convert network result of floating point numbers to an RGB image with
|
| 423 |
+
integer values from 0-255 by applying a colormap.
|
| 424 |
+
|
| 425 |
+
:param result: A single network result after converting to pixel values in H,W or 1,H,W shape.
|
| 426 |
+
:param colormap: A numpy array of shape (num_classes, 3) with an RGB value per class.
|
| 427 |
+
:param remove_holes: If True, remove holes in the segmentation result.
|
| 428 |
+
:return: An RGB image where each pixel is an int8 value according to colormap.
|
| 429 |
+
"""
|
| 430 |
+
import cv2
|
| 431 |
+
import numpy as np
|
| 432 |
+
|
| 433 |
+
if len(result.shape) != 2 and result.shape[0] != 1:
|
| 434 |
+
raise ValueError(f"Expected result with shape (H,W) or (1,H,W), got result with shape {result.shape}")
|
| 435 |
+
|
| 436 |
+
if len(np.unique(result)) > colormap.shape[0]:
|
| 437 |
+
raise ValueError(
|
| 438 |
+
f"Expected max {colormap[0]} classes in result, got {len(np.unique(result))} "
|
| 439 |
+
"different output values. Please make sure to convert the network output to "
|
| 440 |
+
"pixel values before calling this function."
|
| 441 |
+
)
|
| 442 |
+
elif result.shape[0] == 1:
|
| 443 |
+
result = result.squeeze(0)
|
| 444 |
+
|
| 445 |
+
result = result.astype(np.uint8)
|
| 446 |
+
|
| 447 |
+
contour_mode = cv2.RETR_EXTERNAL if remove_holes else cv2.RETR_TREE
|
| 448 |
+
mask = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8)
|
| 449 |
+
for label_index, color in enumerate(colormap):
|
| 450 |
+
label_index_map = result == label_index
|
| 451 |
+
label_index_map = label_index_map.astype(np.uint8) * 255
|
| 452 |
+
contours, hierarchies = cv2.findContours(label_index_map, contour_mode, cv2.CHAIN_APPROX_SIMPLE)
|
| 453 |
+
cv2.drawContours(
|
| 454 |
+
mask,
|
| 455 |
+
contours,
|
| 456 |
+
contourIdx=-1,
|
| 457 |
+
color=color.tolist(),
|
| 458 |
+
thickness=cv2.FILLED,
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
return mask
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
def segmentation_map_to_overlay(image, result, alpha, colormap, remove_holes=False):
|
| 465 |
+
"""
|
| 466 |
+
Returns a new image where a segmentation mask (created with colormap) is overlayed on
|
| 467 |
+
the source image.
|
| 468 |
+
|
| 469 |
+
:param image: Source image.
|
| 470 |
+
:param result: A single network result after converting to pixel values in H,W or 1,H,W shape.
|
| 471 |
+
:param alpha: Alpha transparency value for the overlay image.
|
| 472 |
+
:param colormap: A numpy array of shape (num_classes, 3) with an RGB value per class.
|
| 473 |
+
:param remove_holes: If True, remove holes in the segmentation result.
|
| 474 |
+
:return: An RGP image with segmentation mask overlayed on the source image.
|
| 475 |
+
"""
|
| 476 |
+
import cv2
|
| 477 |
+
import numpy as np
|
| 478 |
+
|
| 479 |
+
if len(image.shape) == 2:
|
| 480 |
+
image = np.repeat(np.expand_dims(image, -1), 3, 2)
|
| 481 |
+
mask = segmentation_map_to_image(result, colormap, remove_holes)
|
| 482 |
+
image_height, image_width = image.shape[:2]
|
| 483 |
+
mask = cv2.resize(src=mask, dsize=(image_width, image_height))
|
| 484 |
+
return cv2.addWeighted(mask, alpha, image, 1 - alpha, 0)
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
# ### Network Results
|
| 488 |
+
#
|
| 489 |
+
# Show network result image, optionally together with the source image and a legend with labels.
|
| 490 |
+
|
| 491 |
+
# In[ ]:
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def viz_result_image(
|
| 495 |
+
result_image,
|
| 496 |
+
source_image=None,
|
| 497 |
+
source_title: str = None,
|
| 498 |
+
result_title: str = None,
|
| 499 |
+
labels: list[Label] = None,
|
| 500 |
+
resize: bool = False,
|
| 501 |
+
bgr_to_rgb: bool = False,
|
| 502 |
+
hide_axes: bool = False,
|
| 503 |
+
):
|
| 504 |
+
"""
|
| 505 |
+
Show result image, optionally together with source images, and a legend with labels.
|
| 506 |
+
|
| 507 |
+
:param result_image: Numpy array of RGB result image.
|
| 508 |
+
:param source_image: Numpy array of source image. If provided this image will be shown
|
| 509 |
+
next to the result image. source_image is expected to be in RGB format.
|
| 510 |
+
Set bgr_to_rgb to True if source_image is in BGR format.
|
| 511 |
+
:param source_title: Title to display for the source image.
|
| 512 |
+
:param result_title: Title to display for the result image.
|
| 513 |
+
:param labels: list of labels. If provided, a legend will be shown with the given labels.
|
| 514 |
+
:param resize: If true, resize the result image to the same shape as the source image.
|
| 515 |
+
:param bgr_to_rgb: If true, convert the source image from BGR to RGB. Use this option if
|
| 516 |
+
source_image is a BGR image.
|
| 517 |
+
:param hide_axes: If true, do not show matplotlib axes.
|
| 518 |
+
:return: Matplotlib figure with result image
|
| 519 |
+
"""
|
| 520 |
+
import cv2
|
| 521 |
+
import numpy as np
|
| 522 |
+
import matplotlib.pyplot as plt
|
| 523 |
+
from matplotlib.lines import Line2D
|
| 524 |
+
|
| 525 |
+
if bgr_to_rgb:
|
| 526 |
+
source_image = to_rgb(source_image)
|
| 527 |
+
if resize:
|
| 528 |
+
result_image = cv2.resize(result_image, (source_image.shape[1], source_image.shape[0]))
|
| 529 |
+
|
| 530 |
+
num_images = 1 if source_image is None else 2
|
| 531 |
+
|
| 532 |
+
fig, ax = plt.subplots(1, num_images, figsize=(16, 8), squeeze=False)
|
| 533 |
+
if source_image is not None:
|
| 534 |
+
ax[0, 0].imshow(source_image)
|
| 535 |
+
ax[0, 0].set_title(source_title)
|
| 536 |
+
|
| 537 |
+
ax[0, num_images - 1].imshow(result_image)
|
| 538 |
+
ax[0, num_images - 1].set_title(result_title)
|
| 539 |
+
|
| 540 |
+
if hide_axes:
|
| 541 |
+
for a in ax.ravel():
|
| 542 |
+
a.axis("off")
|
| 543 |
+
if labels:
|
| 544 |
+
colors = labels.get_colormap()
|
| 545 |
+
lines = [
|
| 546 |
+
Line2D(
|
| 547 |
+
[0],
|
| 548 |
+
[0],
|
| 549 |
+
color=[item / 255 for item in c.tolist()],
|
| 550 |
+
linewidth=3,
|
| 551 |
+
linestyle="-",
|
| 552 |
+
)
|
| 553 |
+
for c in colors
|
| 554 |
+
]
|
| 555 |
+
plt.legend(
|
| 556 |
+
lines,
|
| 557 |
+
labels.get_labels(),
|
| 558 |
+
bbox_to_anchor=(1, 1),
|
| 559 |
+
loc="upper left",
|
| 560 |
+
prop={"size": 12},
|
| 561 |
+
)
|
| 562 |
+
plt.close(fig)
|
| 563 |
+
return fig
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
# ### Live Inference
|
| 567 |
+
|
| 568 |
+
# In[ ]:
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
def show_array(frame, display_handle=None):
|
| 572 |
+
"""
|
| 573 |
+
Display array `frame`. Replace information at `display_handle` with `frame`
|
| 574 |
+
encoded as jpeg image. `frame` is expected to have data in BGR order.
|
| 575 |
+
|
| 576 |
+
Create a display_handle with: `display_handle = display(display_id=True)`
|
| 577 |
+
"""
|
| 578 |
+
import cv2
|
| 579 |
+
from IPython.display import Image, display
|
| 580 |
+
|
| 581 |
+
_, frame = cv2.imencode(ext=".jpeg", img=frame)
|
| 582 |
+
if display_handle is None:
|
| 583 |
+
display_handle = display(Image(data=frame.tobytes()), display_id=True)
|
| 584 |
+
else:
|
| 585 |
+
display_handle.update(Image(data=frame.tobytes()))
|
| 586 |
+
return display_handle
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
# ## Checks and Alerts
|
| 590 |
+
#
|
| 591 |
+
# Create an alert class to show stylized info/error/warning messages and a `check_device` function that checks whether a given device is available.
|
| 592 |
+
|
| 593 |
+
# In[ ]:
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
class NotebookAlert(Exception):
|
| 597 |
+
def __init__(self, message: str, alert_class: str):
|
| 598 |
+
"""
|
| 599 |
+
Show an alert box with the given message.
|
| 600 |
+
|
| 601 |
+
:param message: The message to display.
|
| 602 |
+
:param alert_class: The class for styling the message. Options: info, warning, success, danger.
|
| 603 |
+
"""
|
| 604 |
+
self.message = message
|
| 605 |
+
self.alert_class = alert_class
|
| 606 |
+
self.show_message()
|
| 607 |
+
|
| 608 |
+
def show_message(self):
|
| 609 |
+
from IPython.display import HTML, display
|
| 610 |
+
|
| 611 |
+
display(HTML(f"""<div class="alert alert-{self.alert_class}">{self.message}"""))
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
class DeviceNotFoundAlert(NotebookAlert):
|
| 615 |
+
def __init__(self, device: str):
|
| 616 |
+
"""
|
| 617 |
+
Show a warning message about an unavailable device. This class does not check whether or
|
| 618 |
+
not the device is available, use the `check_device` function to check this. `check_device`
|
| 619 |
+
also shows the warning if the device is not found.
|
| 620 |
+
|
| 621 |
+
:param device: The unavailable device.
|
| 622 |
+
:return: A formatted alert box with the message that `device` is not available, and a list
|
| 623 |
+
of devices that are available.
|
| 624 |
+
"""
|
| 625 |
+
import openvino as ov
|
| 626 |
+
|
| 627 |
+
core = ov.Core()
|
| 628 |
+
supported_devices = core.available_devices
|
| 629 |
+
self.message = f"Running this cell requires a {device} device, " "which is not available on this system. "
|
| 630 |
+
self.alert_class = "warning"
|
| 631 |
+
if len(supported_devices) == 1:
|
| 632 |
+
self.message += f"The following device is available: {core.available_devices[0]}"
|
| 633 |
+
else:
|
| 634 |
+
self.message += "The following devices are available: " f"{', '.join(core.available_devices)}"
|
| 635 |
+
super().__init__(self.message, self.alert_class)
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
def check_device(device: str) -> bool:
|
| 639 |
+
"""
|
| 640 |
+
Check if the specified device is available on the system.
|
| 641 |
+
|
| 642 |
+
:param device: Device to check. e.g. CPU, GPU
|
| 643 |
+
:return: True if the device is available, False if not. If the device is not available,
|
| 644 |
+
a DeviceNotFoundAlert will be shown.
|
| 645 |
+
"""
|
| 646 |
+
import openvino as ov
|
| 647 |
+
|
| 648 |
+
core = ov.Core()
|
| 649 |
+
if device not in core.available_devices:
|
| 650 |
+
DeviceNotFoundAlert(device)
|
| 651 |
+
return False
|
| 652 |
+
else:
|
| 653 |
+
return True
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
def check_openvino_version(version: str) -> bool:
|
| 657 |
+
"""
|
| 658 |
+
Check if the specified OpenVINO version is installed.
|
| 659 |
+
|
| 660 |
+
:param version: the OpenVINO version to check. Example: 2021.4
|
| 661 |
+
:return: True if the version is installed, False if not. If the version is not installed,
|
| 662 |
+
an alert message will be shown.
|
| 663 |
+
"""
|
| 664 |
+
import openvino as ov
|
| 665 |
+
|
| 666 |
+
installed_version = ov.get_version()
|
| 667 |
+
if version not in installed_version:
|
| 668 |
+
NotebookAlert(
|
| 669 |
+
f"This notebook requires OpenVINO {version}. "
|
| 670 |
+
f"The version on your system is: <i>{installed_version}</i>.<br>"
|
| 671 |
+
"Please run <span style='font-family:monospace'>pip install --upgrade -r requirements.txt</span> "
|
| 672 |
+
"in the openvino_env environment to install this version. "
|
| 673 |
+
"See the <a href='https://github.com/openvinotoolkit/openvino_notebooks'>"
|
| 674 |
+
"OpenVINO Notebooks README</a> for detailed instructions",
|
| 675 |
+
alert_class="danger",
|
| 676 |
+
)
|
| 677 |
+
return False
|
| 678 |
+
else:
|
| 679 |
+
return True
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
def optimize_bge_embedding(model_path, output_model_path):
|
| 683 |
+
"""
|
| 684 |
+
optimize_bge_embedding used to optimize BGE model for NPU device
|
| 685 |
+
|
| 686 |
+
Arguments:
|
| 687 |
+
model_path {str} -- original BGE IR model path
|
| 688 |
+
output_model_path {str} -- Converted BGE IR model path
|
| 689 |
+
"""
|
| 690 |
+
import openvino as ov
|
| 691 |
+
|
| 692 |
+
try:
|
| 693 |
+
from openvino.passes import Manager, MatcherPass, WrapType, Matcher
|
| 694 |
+
from openvino import opset10 as ops
|
| 695 |
+
except ImportError:
|
| 696 |
+
from openvino.runtime.passes import Manager, MatcherPass, WrapType, Matcher
|
| 697 |
+
from openvino.runtime import opset10 as ops
|
| 698 |
+
core = ov.Core()
|
| 699 |
+
ov_model = core.read_model(model_path)
|
| 700 |
+
manager = Manager()
|
| 701 |
+
packed_layername_tensor_dict_list = [{"name": "aten::mul/Multiply"}]
|
| 702 |
+
|
| 703 |
+
class ReplaceTensor(MatcherPass):
|
| 704 |
+
def __init__(self, packed_layername_tensor_dict_list):
|
| 705 |
+
MatcherPass.__init__(self)
|
| 706 |
+
self.model_changed = False
|
| 707 |
+
|
| 708 |
+
param = WrapType("opset10.Multiply")
|
| 709 |
+
|
| 710 |
+
def callback(matcher: Matcher) -> bool:
|
| 711 |
+
import numpy as np
|
| 712 |
+
|
| 713 |
+
root = matcher.get_match_root()
|
| 714 |
+
if root is None:
|
| 715 |
+
return False
|
| 716 |
+
for y in packed_layername_tensor_dict_list:
|
| 717 |
+
root_name = root.get_friendly_name()
|
| 718 |
+
if root_name.find(y["name"]) != -1:
|
| 719 |
+
max_fp16 = np.array([[[[-np.finfo(np.float16).max]]]]).astype(np.float32)
|
| 720 |
+
new_tenser = ops.constant(max_fp16, ov.Type.f32, name="Constant_4431")
|
| 721 |
+
root.set_arguments([root.input_value(0).node, new_tenser])
|
| 722 |
+
packed_layername_tensor_dict_list.remove(y)
|
| 723 |
+
|
| 724 |
+
return True
|
| 725 |
+
|
| 726 |
+
self.register_matcher(Matcher(param, "ReplaceTensor"), callback)
|
| 727 |
+
|
| 728 |
+
manager.register_pass(ReplaceTensor(packed_layername_tensor_dict_list))
|
| 729 |
+
manager.run_passes(ov_model)
|
| 730 |
+
ov.save_model(ov_model, output_model_path, compress_to_fp16=False)
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
def collect_telemetry(file: str = ""):
|
| 734 |
+
"""
|
| 735 |
+
The function only tracks that the notebooks cell was executed and does not include any personally identifiable information (PII).
|
| 736 |
+
"""
|
| 737 |
+
try:
|
| 738 |
+
import os
|
| 739 |
+
import requests
|
| 740 |
+
import platform
|
| 741 |
+
from pathlib import Path
|
| 742 |
+
|
| 743 |
+
if os.getenv("SCARF_NO_ANALYTICS") == "1" or os.getenv("DO_NOT_TRACK") == "1":
|
| 744 |
+
return
|
| 745 |
+
url = "https://openvino.gateway.scarf.sh/telemetry"
|
| 746 |
+
params = {
|
| 747 |
+
"notebook_dir": Path(__file__).parent.name,
|
| 748 |
+
"platform": platform.system(),
|
| 749 |
+
"arch": platform.machine(),
|
| 750 |
+
"python_version": platform.python_version(),
|
| 751 |
+
}
|
| 752 |
+
if file:
|
| 753 |
+
params["file"] = file
|
| 754 |
+
requests.get(url, params=params)
|
| 755 |
+
except Exception:
|
| 756 |
+
pass
|
pip_helper.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def pip_install(*args):
|
| 5 |
+
import subprocess # nosec - disable B404:import-subprocess check
|
| 6 |
+
|
| 7 |
+
cli_args = []
|
| 8 |
+
for arg in args:
|
| 9 |
+
cli_args.extend(str(arg).split(" "))
|
| 10 |
+
subprocess.run([sys.executable, "-m", "pip", "install", *cli_args], check=True)
|