Spaces:
Runtime error
Runtime error
Update app.py
Browse fileschanged helped funcs and imported copy
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from flax.training.common_utils import shard
|
|
| 5 |
from PIL import Image
|
| 6 |
from argparse import Namespace
|
| 7 |
import gradio as gr
|
| 8 |
-
|
| 9 |
import numpy as np
|
| 10 |
import mediapipe as mp
|
| 11 |
from mediapipe import solutions
|
|
@@ -18,39 +18,54 @@ from diffusers import (
|
|
| 18 |
FlaxControlNetModel,
|
| 19 |
FlaxStableDiffusionControlNetPipeline,
|
| 20 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
MARGIN = 10 # pixels
|
| 25 |
-
FONT_SIZE = 1
|
| 26 |
-
FONT_THICKNESS = 1
|
| 27 |
-
HANDEDNESS_TEXT_COLOR = (88, 205, 54) # vibrant green
|
| 28 |
-
|
| 29 |
-
def draw_landmarks_on_image(rgb_image, detection_result):
|
| 30 |
-
hand_landmarks_list = detection_result.hand_landmarks
|
| 31 |
-
handedness_list = detection_result.handedness
|
| 32 |
-
annotated_image = np.zeros_like(rgb_image)
|
| 33 |
-
|
| 34 |
-
# Loop through the detected hands to visualize.
|
| 35 |
-
for idx in range(len(hand_landmarks_list)):
|
| 36 |
-
hand_landmarks = hand_landmarks_list[idx]
|
| 37 |
-
handedness = handedness_list[idx]
|
| 38 |
-
|
| 39 |
-
# Draw the hand landmarks.
|
| 40 |
-
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
|
| 41 |
-
hand_landmarks_proto.landmark.extend([
|
| 42 |
-
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
|
| 43 |
-
])
|
| 44 |
-
solutions.drawing_utils.draw_landmarks(
|
| 45 |
-
annotated_image,
|
| 46 |
-
hand_landmarks_proto,
|
| 47 |
-
solutions.hands.HAND_CONNECTIONS,
|
| 48 |
-
solutions.drawing_styles.get_default_hand_landmarks_style(),
|
| 49 |
-
solutions.drawing_styles.get_default_hand_connections_style())
|
| 50 |
-
|
| 51 |
-
return annotated_image
|
| 52 |
-
|
| 53 |
-
def generate_annotation(img):
|
| 54 |
"""img(input): numpy array
|
| 55 |
annotated_image(output): numpy array
|
| 56 |
"""
|
|
@@ -68,7 +83,7 @@ def generate_annotation(img):
|
|
| 68 |
detection_result = detector.detect(image)
|
| 69 |
|
| 70 |
# STEP 5: Process the classification result. In this case, visualize it.
|
| 71 |
-
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result)
|
| 72 |
return annotated_image
|
| 73 |
|
| 74 |
args = Namespace(
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
from argparse import Namespace
|
| 7 |
import gradio as gr
|
| 8 |
+
import copy # added
|
| 9 |
import numpy as np
|
| 10 |
import mediapipe as mp
|
| 11 |
from mediapipe import solutions
|
|
|
|
| 18 |
FlaxControlNetModel,
|
| 19 |
FlaxStableDiffusionControlNetPipeline,
|
| 20 |
)
|
| 21 |
+
right_style_lm = copy.deepcopy(solutions.drawing_styles.get_default_hand_landmarks_style())
|
| 22 |
+
left_style_lm = copy.deepcopy(solutions.drawing_styles.get_default_hand_landmarks_style())
|
| 23 |
+
right_style_lm[0].color=(251, 206, 177)
|
| 24 |
+
left_style_lm[0].color=(255, 255, 225)
|
| 25 |
+
|
| 26 |
+
def draw_landmarks_on_image(rgb_image, detection_result, overlap=False, hand_encoding=False):
|
| 27 |
+
hand_landmarks_list = detection_result.hand_landmarks
|
| 28 |
+
handedness_list = detection_result.handedness
|
| 29 |
+
if overlap:
|
| 30 |
+
annotated_image = np.copy(rgb_image)
|
| 31 |
+
else:
|
| 32 |
+
annotated_image = np.zeros_like(rgb_image)
|
| 33 |
+
|
| 34 |
+
# Loop through the detected hands to visualize.
|
| 35 |
+
for idx in range(len(hand_landmarks_list)):
|
| 36 |
+
hand_landmarks = hand_landmarks_list[idx]
|
| 37 |
+
handedness = handedness_list[idx]
|
| 38 |
+
# Draw the hand landmarks.
|
| 39 |
+
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
|
| 40 |
+
hand_landmarks_proto.landmark.extend([
|
| 41 |
+
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
|
| 42 |
+
])
|
| 43 |
+
if hand_encoding:
|
| 44 |
+
if handedness[0].category_name == "Left":
|
| 45 |
+
solutions.drawing_utils.draw_landmarks(
|
| 46 |
+
annotated_image,
|
| 47 |
+
hand_landmarks_proto,
|
| 48 |
+
solutions.hands.HAND_CONNECTIONS,
|
| 49 |
+
left_style_lm,
|
| 50 |
+
solutions.drawing_styles.get_default_hand_connections_style())
|
| 51 |
+
if handedness[0].category_name == "Right":
|
| 52 |
+
solutions.drawing_utils.draw_landmarks(
|
| 53 |
+
annotated_image,
|
| 54 |
+
hand_landmarks_proto,
|
| 55 |
+
solutions.hands.HAND_CONNECTIONS,
|
| 56 |
+
right_style_lm,
|
| 57 |
+
solutions.drawing_styles.get_default_hand_connections_style())
|
| 58 |
+
else:
|
| 59 |
+
solutions.drawing_utils.draw_landmarks(
|
| 60 |
+
annotated_image,
|
| 61 |
+
hand_landmarks_proto,
|
| 62 |
+
solutions.hands.HAND_CONNECTIONS,
|
| 63 |
+
solutions.drawing_styles.get_default_hand_landmarks_style(),
|
| 64 |
+
solutions.drawing_styles.get_default_hand_connections_style())
|
| 65 |
|
| 66 |
+
return annotated_image
|
| 67 |
|
| 68 |
+
def generate_annotation(img, overlap=False, hand_encoding=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
"""img(input): numpy array
|
| 70 |
annotated_image(output): numpy array
|
| 71 |
"""
|
|
|
|
| 83 |
detection_result = detector.detect(image)
|
| 84 |
|
| 85 |
# STEP 5: Process the classification result. In this case, visualize it.
|
| 86 |
+
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result, overlap=overlap, hand_encoding=hand_encoding)
|
| 87 |
return annotated_image
|
| 88 |
|
| 89 |
args = Namespace(
|