import torch import torch.nn as nn class CNN(nn.Module): def __init__(self, n_filters, hidden_dim, n_layers, n_classes): super().__init__() self.conv1 = nn.Conv2d(1, n_filters, 5) self.relu1 = nn.ReLU() self.maxpool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(n_filters, 2*n_filters, 5) self.relu2 = nn.ReLU() self.maxpool2 = nn.MaxPool2d(2) self.input_dim = 960 self.flatten = nn.Flatten() self.inp_layer = nn.Linear(self.input_dim, hidden_dim) self.classifier = nn.ModuleList([ nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.BatchNorm1d(hidden_dim), nn.ReLU(), nn.Dropout(p=0.3) ) for i in range(n_layers) ]) self.out_layer = nn.Linear(hidden_dim, n_classes) def forward(self, x): x = self.maxpool1(self.relu1(self.conv1(x))) x = self.maxpool2(self.relu2(self.conv2(x))) x = self.inp_layer(torch.flatten(x, start_dim=1)) for layer in self.classifier: x = layer(x) x = self.out_layer(x) return x