# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=missing-class-docstring # pylint: disable=missing-function-docstring import abc import collections.abc import functools import inspect import itertools import operator import queue import types from collections import defaultdict from contextlib import contextmanager, nullcontext from dataclasses import dataclass from typing import ( TYPE_CHECKING, Any, Callable, Dict, Generic, Iterable, Iterator, List, Mapping, Optional, Protocol, Sequence, Tuple, TypeVar, Union, cast, runtime_checkable, ) import torch import torch.distributed from lightning.pytorch.trainer.states import TrainerFn from lightning.pytorch.utilities import move_data_to_device try: from megatron.core import parallel_state from megatron.core.distributed import DistributedDataParallel as McoreDDP from megatron.core.distributed import DistributedDataParallelConfig from megatron.core.optimizer import OptimizerConfig from megatron.core.transformer.moe.moe_utils import get_moe_layer_wise_logging_tracker from megatron.core.transformer.transformer_config import TransformerConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): McoreDDP = object DistributedDataParallelConfig = object TransformerConfig = object HAVE_MEGATRON_CORE = False from torch import Tensor, nn from typing_extensions import override from nemo.utils.model_utils import check_lib_version try: from megatron.core.distributed.custom_fsdp import FullyShardedDataParallel HAVE_CUSTOM_FSDP = True except ImportError: HAVE_CUSTOM_FSDP = False try: from megatron.core.distributed import FullyShardedDataParallel HAVE_MEGATRON_FSDP = True except ImportError: HAVE_MEGATRON_FSDP = False try: from megatron.core.full_cuda_graph import FullCudaGraphWrapper HAVE_FULL_CUDA_GRAPH = True except ImportError: _, mcore_import_msg = check_lib_version("megatron.core", "0.14.0", operator.ge) HAVE_FULL_CUDA_GRAPH = False DataT = TypeVar("DataT", Tensor, Dict[str, Tensor], Sequence[Tensor]) ModelT = TypeVar("ModelT", bound=nn.Module) T = TypeVar('T') STEP_OUTPUT = Optional[Union[Tensor, Mapping[str, Any]]] if TYPE_CHECKING: import lightning.pytorch as pl @runtime_checkable class PrecisionPluginProtocol(Protocol[DataT]): def convert_input(self, data: DataT) -> DataT: ... def convert_output(self, output: torch.Tensor) -> torch.Tensor: ... def default_data_step(dataloader_iter: Iterator[DataT]) -> DataT: """ Moves the data to a device. In this case we unpack the dataloader iterator. There may be a wrapper on the dataloader iter from here: https://github.com/NVIDIA/NeMo/blob/main/nemo/lightning/fabric/strategies.py#L441. This will not subset the data for your with context parallel so please override this function if you want to use context parallel. Examples: If the dataloader_iter returns: [Tuple[, , ]] -> move to device If the dataloader_iter returns: [, ] -> move to device Returns: DataT: The data moved to the device. """ if parallel_state.get_context_parallel_world_size() > 1: raise ValueError( "Default data step is being used in a context parallel environment." "Please define your own data step that appropriately slices the data for context parallel." ) batch = next(dataloader_iter) # If its wrapped in a tuple, unpack it. if isinstance(batch, tuple) and len(batch) == 3: batch = batch[0] return move_data_to_device(batch, torch.cuda.current_device()) def default_forward_step(model: nn.Module, batch, *args, **kwargs) -> torch.Tensor: return model(batch, *args, **kwargs) def extract_ddp_funcs(ddp_config, pipeline): no_sync_func, grad_sync_func = None, None if getattr(ddp_config, "overlap_grad_reduce", False): no_sync_func = [model_chunk.no_sync for model_chunk in pipeline] no_sync_func = no_sync_func[0] if len(pipeline) == 1 else no_sync_func if getattr(ddp_config, "align_grad_reduce", False): grad_sync_func = [model_chunk.start_grad_sync for model_chunk in pipeline] grad_sync_func = grad_sync_func[0] if len(pipeline) == 1 else grad_sync_func return no_sync_func, grad_sync_func class MegatronParallel(nn.ModuleList, Generic[ModelT]): """Implements distributed model parallelism that is based on Megatron-LM. This supports various forms of parallelism: - tensor-parallelism - pipeline-parallelism - virtual pipeline parallelism - expert parallelism - sequence parallelism Attributes ---------- pipeline (Union[nn.Module, Iterable[nn.Module]]): The sequence of modules that constitute the pipeline. precision_plugin (Optional[PrecisionPluginProtocol]): An optional plugin for managing precision-specific operations. callbacks (CallbackConnector): A connector for managing and invoking callbacks. data_step (Callable[[Iterator[DataT]], DataT]): A function that takes an iterator over the data and returns the next batch. forward_step (Callable[[nn.Module, DataT], Tensor]): A function that defines the forward pass of a model. loss_reduction (Optional[Callable[[nn.Module], MegatronLossReduction]]): An optional function that defines how the loss is reduced. vp_size (Optional[int]): Virtual pipeline parallel size. ddp_config (Optional[DistributedDataParallelConfig]): An instance of Megatron core's DistributedDataParallelConfig which controls the Megatron DDP configuration. fsdp (Optional[str]): Whether model should run Torch FSDP2 instead of DDP, select from ["megatron", "torch"]. Defaults to None. cpu (bool): Whether model should reside on CPU. convert_module_fn (Optional[Callable[[ModelT], nn.Module]]): An optional function to apply to the model parameters after initialization. Examples -------- >>> from torch import nn >>> from megatron_ext.megatron_parallel import MegatronParallel >>> model = nn.Sequential(nn.Linear(10, 10), nn.ReLU(), nn.Linear(10, 5)) >>> megatron_model = MegatronParallel(model) >>> print(megatron_model) MegatronParallel( (0): Linear(in_features=10, out_features=10, bias=True) (1): ReLU() (2): Linear(in_features=10, out_features=5, bias=True) ) References ---------- Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM. arXiv preprint arXiv:1909.08053. """ def __init__( self, pipeline: Union[ModelT, Iterable[ModelT]], precision_plugin: Optional[PrecisionPluginProtocol] = None, callbacks: Optional["CallbackConnector"] = None, data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None, forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None, loss_reduction: Optional[Callable[[ModelT], "MegatronLossReduction"]] = None, vp_size: Optional[int] = None, ddp_config: Optional[DistributedDataParallelConfig] = None, fsdp: Optional[str] = None, cpu: bool = False, convert_module_fn: Optional[Callable[[ModelT], nn.Module]] = None, ) -> None: from megatron.core import parallel_state _pipeline: List[nn.Module] if isinstance(pipeline, nn.ModuleList): _pipeline = list(pipeline) elif isinstance(pipeline, nn.Module): _pipeline = [pipeline] else: _pipeline = pipeline if vp_size is not None: if len(_pipeline) == 1 and parallel_state.get_pipeline_model_parallel_world_size() > 1: from nemo.lightning import io for i in range(1, vp_size): _model = io.reinit(_pipeline[0]) if hasattr(_model, "configure_model"): _model.configure_model(vp_stage=i) _pipeline.append(_model) super().__init__(_pipeline) self.precision_plugin = precision_plugin self._cpu = cpu self.callbacks = callbacks or CallbackConnector() self.data_step = data_step or default_data_step self.forward_step = forward_step or default_forward_step self.loss_reduction: MegatronLossReduction = loss_reduction self.ddp_config = ddp_config self.fsdp = fsdp self.convert_module_fn = convert_module_fn self.vp_size = vp_size def forward( self, data: Union[DataT, Iterator[DataT], List[Iterator[DataT]]], forward_only: bool = True, data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None, forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None, loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None, seq_length: Optional[int] = None, micro_batch_size: Optional[int] = None, num_microbatches: Optional[int] = None, step_i: Optional[int] = None, wrap_forward_step: bool = True, ) -> torch.Tensor: """The method performs the forward pass of the model. This method is responsible for executing the forward pass of the model. If `forward_only` is set to False, During the execution, it invokes various callbacks at different stages of the operation. For more info about that see [CallbackConnector]. Args: data (Union[DataT, Iterator[DataT], List[Iterator[DataT]]]): The input data for the model. forward_only (bool, optional): If True, only perform the forward pass. Defaults to True. data_step (Optional[Callable[[Iterator[DataT]], DataT]], optional): Function to process the data. Defaults to None. forward_step (Optional[Callable[[nn.Module, DataT], Tensor]], optional): Function to perform the forward pass. Defaults to None. loss_reduction (Optional[MegatronLossReduction[DataT, Any]], optional): Function to reduce the loss. Defaults to None. seq_length (Optional[int], optional): Sequence length for the model. Defaults to None. micro_batch_size (Optional[int], optional): Size of the micro batch. Defaults to None. num_microbatches (Optional[int], optional): Number of microbatches. Defaults to None. wrap_forward_step (bool, optional): If True, wrap the forward step function. Defaults to True. Returns ------- torch.Tensor: The output tensor from the forward pass. """ _forward_step = forward_step or self.forward_step _loss_reduction = loss_reduction or self.loss_reduction _forward_context = {} if wrap_forward_step: _data_step = data_step or self.data_step forward_step_func = self.wrapped_forward_step( forward_step=_forward_step, data_step=_data_step, loss_reduction=_loss_reduction, context=_forward_context, ) else: forward_step_func = _forward_step step = MegatronStep.infer( self, data, forward_step_func, forward_only=forward_only, micro_batch_size=micro_batch_size, num_microbatches=num_microbatches, seq_length=seq_length, step_i=step_i, ) _forward_context["step"] = step step = self.callbacks.transform_event("on_megatron_step_start", step) self.callbacks.event("on_megatron_microbatches_start", step=step) microbatch_outputs = step() self.callbacks.event("on_megatron_microbatches_end", step=step, microbatch_outputs=microbatch_outputs) if microbatch_outputs: self.callbacks.event( "on_megatron_reduce_microbatches_start", step=step, microbatch_outputs=microbatch_outputs ) if isinstance(_loss_reduction, _ModuleStepFunction): _loss_reduction = _loss_reduction(self.module) reduced = _loss_reduction.reduce(microbatch_outputs) self.callbacks.event( "on_megatron_reduce_microbatches_end", step=step, loss_reduction=_loss_reduction, microbatch_outputs=microbatch_outputs, reduced=reduced, ) else: # we're not on the last pipeline stage so no losses reduced = torch.tensor(0.0, device=torch.cuda.current_device()) self.callbacks.event("on_megatron_step_end", step=step, microbatch_outputs=microbatch_outputs, reduced=reduced) return reduced def training_step( self, data: DataT, data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None, forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None, loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None, seq_length: Optional[int] = None, micro_batch_size: Optional[int] = None, num_microbatches: Optional[int] = None, **kwargs, ) -> STEP_OUTPUT: return self._step( "training", data, data_step=data_step, forward_step=forward_step, loss_reduction=loss_reduction, seq_length=seq_length, micro_batch_size=micro_batch_size, num_microbatches=num_microbatches, forward_only=False, **kwargs, ) def validation_step( self, data: DataT, data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None, forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None, loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None, seq_length: Optional[int] = None, micro_batch_size: Optional[int] = None, num_microbatches: Optional[int] = None, step_i: Optional[int] = None, **kwargs, ) -> STEP_OUTPUT: return self._step( "validation", data, data_step=data_step, forward_step=forward_step, loss_reduction=loss_reduction, seq_length=seq_length, micro_batch_size=micro_batch_size, num_microbatches=num_microbatches, step_i=step_i, forward_only=True, **kwargs, ) def test_step( self, data: DataT, data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None, forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None, loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None, seq_length: Optional[int] = None, micro_batch_size: Optional[int] = None, num_microbatches: Optional[int] = None, step_i: Optional[int] = None, **kwargs, ) -> STEP_OUTPUT: return self._step( "test", data, data_step=data_step, forward_step=forward_step, loss_reduction=loss_reduction, seq_length=seq_length, micro_batch_size=micro_batch_size, num_microbatches=num_microbatches, step_i=step_i, forward_only=True, **kwargs, ) def predict_step( self, data: DataT, data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None, forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None, loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None, seq_length: Optional[int] = None, micro_batch_size: Optional[int] = None, num_microbatches: Optional[int] = None, step_i: Optional[int] = None, **kwargs, ) -> STEP_OUTPUT: return self._step( "predict", data, data_step=data_step, forward_step=forward_step, loss_reduction=loss_reduction, seq_length=seq_length, micro_batch_size=micro_batch_size, num_microbatches=num_microbatches, step_i=step_i, forward_only=True, **kwargs, ) def _step( self, step_type: str, data: DataT, data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None, forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None, loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None, seq_length: Optional[int] = None, micro_batch_size: Optional[int] = None, num_microbatches: Optional[int] = None, forward_only: bool = True, step_i: Optional[int] = None, **kwargs, ) -> STEP_OUTPUT: if not hasattr(self.module, f"{step_type}_step"): raise AttributeError(f"self.module must have a `{step_type}_step` method") _data_step = data_step or _ModuleStepFunction.from_data_step(self.module, step_type) _forward_step = forward_step or _ModuleStepFunction.from_forward_step(self.module, step_type) _loss_reduction = loss_reduction or _ModuleStepFunction.from_loss_reduction(self.module, step_type) return self.forward( data=data, data_step=_data_step, forward_step=_forward_step, loss_reduction=_loss_reduction, seq_length=seq_length, micro_batch_size=micro_batch_size, num_microbatches=num_microbatches, forward_only=forward_only, step_i=step_i, **kwargs, ) def wrapped_forward_step( self, forward_step, loss_reduction, data_step, context ) -> Callable[[nn.Module, DataT], Tuple[torch.Tensor, "MegatronCallbackProtocol"]]: """The method wraps the forward step function and returns a callable. The output is a forward_step function in the form of: https://github.com/NVIDIA/Megatron-LM/blob/main/pretrain_gpt.py#L129 Args: forward_step (Callable): The forward step function to be wrapped. loss_reduction (Callable): The loss reduction function. context (Dict): The context dictionary. data_step (Callable): The data step function. Returns ------- Callable: The wrapped forward step function. """ from megatron.core import parallel_state @functools.wraps(forward_step) def wrapped_forward_step_func(dataloader_iter, model): if isinstance(data_step, _ModuleStepFunction): _data_step = data_step(model) else: _data_step = data_step batch = _data_step(dataloader_iter) step = context["step"] if isinstance(loss_reduction, _ModuleStepFunction): forward_callback = loss_reduction(model) else: forward_callback = loss_reduction if isinstance(forward_step, _ModuleStepFunction): _forward_step = forward_step(model) else: _forward_step = forward_step self.callbacks.event( "on_megatron_microbatch_start", step=step, batch=batch, forward_callback=forward_callback, ) if self.precision_plugin and parallel_state.is_pipeline_first_stage( ignore_virtual=False, vp_stage=getattr(model.module, 'vp_stage', None) ): batch = self.precision_plugin.convert_input(batch) output_tensor = _forward_step(model, batch) # callback self._setup_module( forward_callback, batch=batch, model=self, forward_module=model, tensor=output_tensor, ) if self.precision_plugin and parallel_state.is_pipeline_last_stage( ignore_virtual=False, vp_stage=getattr(model.module, 'vp_stage', None) ): output_tensor = self.precision_plugin.convert_output(output_tensor) self.callbacks.event( "on_megatron_microbatch_end", step=step, batch=batch, output=output_tensor, forward_callback=forward_callback, ) return output_tensor, forward_callback return wrapped_forward_step_func def init_model_parallel(self): from megatron.core import parallel_state from megatron.core.tensor_parallel.layers import set_defaults_if_not_set_tensor_model_parallel_attributes for model_module in self: if not self._cpu and ((not HAVE_MEGATRON_FSDP and not HAVE_CUSTOM_FSDP) or self.fsdp != "megatron"): # If Megatron custom FSDP is enabled, we don't need to move the model to GPU here to avoid GPU OOM. model_module.cuda(torch.cuda.current_device()) for param in model_module.parameters(): set_defaults_if_not_set_tensor_model_parallel_attributes(param) if hasattr(model_module, "configure_model"): if not hasattr(model_module, "set_input_tensor"): if hasattr(model_module.module, "set_input_tensor"): model_module.set_input_tensor = model_module.module.set_input_tensor else: # TODO: What to do here? pass # Print number of parameters. if parallel_state.model_parallel_is_initialized() and parallel_state.get_data_parallel_rank() == 0: from nemo.utils import logging num_params = _calc_number_of_params(list(self)) num_trainable_params = _calc_number_of_trainable_params(list(self)) msg = ( f" > number of parameters on (tensor, pipeline) model parallel rank " f"({parallel_state.get_tensor_model_parallel_rank()} ," f"{parallel_state.get_pipeline_model_parallel_rank()}): " f"{num_params}" ) logging.info(msg) if num_params != num_trainable_params: logging.info( f" > number of trainable parameters: {num_trainable_params} " f"({num_trainable_params / num_params:.2%} of total)" ) if self.convert_module_fn: self.apply_convert_module_fn() # Skip init_ddp for inference i.e testing as it can lead to OOM. try: if not self.trainer.state.fn == TrainerFn.TESTING: # DDP initialization is required to be on side-stream to for full iteration CUDA graph. with torch.cuda.stream(torch.cuda.Stream()): self.init_ddp() except RuntimeError as e: # Don't fail if trainer is not attached, re-raise any other RuntimeError if "is not attached to a `Trainer`" not in str(e): raise e def apply_convert_module_fn(self): for i in range(len(self)): self[i] = self.convert_module_fn(self[i]) def init_ddp(self): if not isinstance(self.ddp_config, DistributedDataParallelConfig): return from megatron.core import parallel_state from megatron.core.transformer.module import Float16Module from nemo.utils.model_utils import unwrap_model for model_chunk_idx, model_chunk in enumerate(self): module = model_chunk.module # Mcore DistributedDataParallel has to be called with grad. Normally this call is redundant, but for # PEFT with num_sanity_val_steps > 0 this is necessary. init_ddp_context = nullcontext if all(x.requires_grad for x in module.parameters()) else torch.enable_grad # Turn off bucketing for model_chunk 2 onwards, since communication for these # model chunks is overlapped with compute anyway, or if using VP and overlapping # data parallel param gather with optimizer overlap_param_gather_with_optimizer_step = False if hasattr(self, "optim") and isinstance(self.optim.config, OptimizerConfig): overlap_param_gather_with_optimizer_step = self.optim.config.overlap_param_gather_with_optimizer_step disable_bucketing = (model_chunk_idx > 0) or overlap_param_gather_with_optimizer_step with init_ddp_context(): # Avoid rewrapping the module if it's already wrapped with FSDP unwrapped_module = unwrap_model(module, Float16Module) if ( (HAVE_MEGATRON_FSDP or HAVE_CUSTOM_FSDP) and self.fsdp == "megatron" and not isinstance(unwrapped_module, FullyShardedDataParallel) ): from nemo.utils import logging if not getattr(module.config, "use_megatron_fsdp", False): setattr(module.config, "use_megatron_fsdp", True) logging.warning("Setting module.config.use_megatron_fsdp to True for MCore FSDP.") if not getattr(module.config, "use_custom_fsdp", False): setattr(module.config, "use_custom_fsdp", True) logging.warning("Setting module.config.use_custom_fsdp to True for MCore FSDP.") if getattr(module.config, "gradient_accumulation_fusion", True): setattr(module.config, "gradient_accumulation_fusion", False) logging.warning("Setting module.config.gradient_accumulation_fusion to False for MCore FSDP.") if HAVE_MEGATRON_FSDP: assert module.config.use_megatron_fsdp, "MCore FSDP is not enabled in module.config." assert self.ddp_config.use_megatron_fsdp, "MCore FSDP is not enabled in ddp_config." elif HAVE_CUSTOM_FSDP: assert module.config.use_custom_fsdp, "MCore FSDP is not enabled in module.config." assert self.ddp_config.use_custom_fsdp, "MCore FSDP is not enabled in ddp_config." logging.warning( "Deprecation Notice: `use_custom_fsdp` will be deprecated in M-Core 0.14. " "Please use `use_megatron_fsdp` instead." ) dist_module = FullyShardedDataParallel( module.config, self.ddp_config, module, disable_bucketing=disable_bucketing, ) if HAVE_MEGATRON_FSDP: dist_module.buffers = [dist_module.param_and_grad_buffer] dist_module.config = module.config dist_module.sharded_state_dict = lambda *args, **kwargs: dist_module.state_dict() elif not isinstance(unwrapped_module, DDP): dist_module = DDP( module.config, self.ddp_config, module, data_parallel_group=parallel_state.get_data_parallel_group(with_context_parallel=True), expert_data_parallel_group=parallel_state.get_data_modulo_expert_parallel_group(), disable_bucketing=disable_bucketing, ) else: dist_module = unwrapped_module model_chunk.module = dist_module model_chunk.buffers = ( dist_module.buffers ) # We need to do this explicitly since this is a attr pytorch uses # save a reference to the original getattr function # so we can restore the class' getattr during teardown original_getattr = types.FunctionType( model_chunk.__getattr__.__code__, model_chunk.__getattr__.__globals__, model_chunk.__getattr__.__name__, model_chunk.__getattr__.__defaults__, model_chunk.__getattr__.__closure__, ) model_chunk.original_getattr = original_getattr model_chunk.original_getattr.__dict__.update(model_chunk.__getattr__.__dict__) model_chunk.__class__.__getattr__ = getattr_proxy # type: ignore # param_sync_func is set in nemo.lightning.pytorch.optim.megatron no_sync_func, grad_sync_func = extract_ddp_funcs(self.ddp_config, self) for module in self: module.config.no_sync_func = no_sync_func module.config.grad_sync_func = grad_sync_func def teardown_ddp(self): for model_chunk in self: if hasattr(model_chunk, "original_getattr"): model_chunk.__class__.__getattr__ = model_chunk.original_getattr # type: ignore def _setup_module(self, function, **kwargs) -> None: if hasattr(function, "setup"): setup_args = inspect.getfullargspec(function.setup).args setup_kwargs = {k: v for k, v in kwargs.items() if k in setup_args} function.setup(**setup_kwargs) def _call_module(self, function, *args, **kwargs) -> torch.Tensor: self._setup_module(function, **kwargs) call_args = inspect.getfullargspec(function).args call_kwargs = {k: v for k, v in kwargs.items() if k in call_args} output_tensor = function(*args, **call_kwargs) return output_tensor def sharded_state_dict(self, prefix: str = "", metadata: Optional[dict] = None) -> Dict[str, Any]: """ Creates the sharded state dict which is used by dist_checkpoint to save the sharded tensors to disk. When given the sharded_stated_dict, dist_checkpoint.load will load the tensors corresponding to self.state_dict(). The sharded tensor mapping is defined in the GPTModel class from mcore. """ from nemo.utils import logging if metadata is None: metadata = self.trainer.strategy.sharded_state_dict_metadata logging.debug( f'No sharded_state_dict metadata passed for the model,' f' using metadata for checkpoint save: {metadata}' ) else: logging.debug(f'Using passed sharded_state_dict metadata in the model: {metadata}') sharded_state_dict = {} for index, module in enumerate(self): if self.vp_size is not None: module_sharded_state_dict = self._module_sharded_state_dict(module, metadata=metadata) sharded_state_dict[f"model_{index}"] = module_sharded_state_dict else: module_sharded_state_dict = self._module_sharded_state_dict(module, metadata=metadata) sharded_state_dict.update(module_sharded_state_dict) return sharded_state_dict def _module_sharded_state_dict(self, module, *args, **kwargs) -> Dict[str, Any]: if hasattr(module, "sharded_state_dict"): return module.sharded_state_dict(*args, **kwargs) elif hasattr(module, "configure_model"): prefix = "".join([kwargs.pop("prefix", ""), "module."]) return self._module_sharded_state_dict(module.module, *args, prefix=prefix, **kwargs) raise ValueError("Could not find sharded state dict") def enable_forward_pre_hook(self): for model in self: model_chunk = model.module assert isinstance(model_chunk, DDP) or isinstance(model_chunk, FullyShardedDataParallel) model_chunk.enable_forward_pre_hook() def disable_forward_pre_hook(self): for model in self: model_chunk = model.module assert isinstance(model_chunk, DDP) or isinstance(model_chunk, FullyShardedDataParallel) model_chunk.disable_forward_pre_hook() def force_param_sync(self): for model in self: model_chunk = model.module assert isinstance(model_chunk, DDP) or isinstance(model_chunk, FullyShardedDataParallel) model_chunk.start_param_sync(force_sync=True) @property def pipeline(self) -> Union[ModelT, List[ModelT]]: if len(self) == 1: return self[0] else: return list(self) @property def module(self) -> ModelT: return self[0] @override def __getattr__(self, item: Any) -> Any: try: # First, try to get the attribute from the superclass (nn.ModuleList) return super().__getattr__(item) except AttributeError: # If not found in superclass, check if we have any modules if len(self) == 0: raise AttributeError( f"'{self.__class__.__name__}' object has no attribute '{item}' and contains no modules" ) # Try to get it from the first module try: return getattr(self._modules[self._get_abs_string_index(0)], item) except AttributeError: raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{item}'") class _ModuleStepFunction: """ This class acts as a bridge between Megatron core's lower-level functional API and PTL's object-oriented API, making it possible to use PTL-compatible functions in Megatron core. """ def __init__(self, name: str, is_property: bool = False, includes_self: bool = False): self.name = name self.is_property = is_property self.includes_self = includes_self @classmethod def from_data_step(cls, module: "pl.LightningModule", step_type: str) -> Optional["_ModuleStepFunction"]: for fn_name in [f"{step_type}_data_step", "data_step"]: if hasattr(module, fn_name): return _ModuleStepFunction(fn_name) return None @classmethod def from_forward_step(cls, module: "pl.LightningModule", step_type: str) -> Optional["_ModuleStepFunction"]: from megatron.core import parallel_state if parallel_state.is_pipeline_last_stage(ignore_virtual=False, vp_stage=getattr(module, 'vp_stage', None)): if not hasattr(module, f"{step_type}_step"): raise ValueError(f"LightningModule does not have {step_type}_step method") return _ModuleStepFunction(f"{step_type}_step", includes_self=True) for fn_name in [f"{step_type}_forward_step", "forward_step"]: if hasattr(module, fn_name): return _ModuleStepFunction(fn_name, includes_self=True) return None @classmethod def from_loss_reduction(cls, module: "pl.LightningModule", step_type: str) -> Optional["_ModuleStepFunction"]: for fn_name in [f"{step_type}_loss_reduction", "loss_reduction"]: if hasattr(module, fn_name): return _ModuleStepFunction(fn_name, is_property=True) return None def __call__(self, module: nn.Module): attr = getattr(module, self.name) if self.is_property: if isinstance(getattr(type(module), self.name), property): return attr else: return attr() if self.includes_self: def wrapped(self, *args): return attr(*args) return wrapped return attr def getattr_proxy(self, item: Any) -> Any: try: return super(self.__class__, self).__getattr__(item) except AttributeError as e: if item == 'module': ## this is a hacky WAR and may cause misleading error messages raise e try: return getattr(self.module, item) except AttributeError: raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{item}'") class DDP(McoreDDP): def __init__( self, config: TransformerConfig, ddp_config: DistributedDataParallelConfig, module: torch.nn.Module, disable_bucketing: bool = False, **kwargs, ): init_parameters = inspect.signature(McoreDDP.__init__).parameters # Updates to the McoreDDP class have removed some parameters, so we need to # filter out any kwargs that are not part of the updated signature, if a new # version of mcore is being used. filtered_kwargs = {k: v for k, v in kwargs.items() if k in init_parameters} super().__init__( config=config, ddp_config=ddp_config, module=module, disable_bucketing=disable_bucketing, **filtered_kwargs, ) def state_dict(self, prefix='', keep_vars=False, **kwargs): self.module.state_dict(prefix=prefix, keep_vars=keep_vars, **kwargs) def __getattr__(self, item: Any) -> Any: return getattr_proxy(self, item) class CallbackConnector: """ A connector for managing and invoking callbacks. The CallbackConnector class in the MegatronParallel module is used to manage and invoke callbacks during the execution of the model. Callbacks are functions that are called at specific stages of the model execution, allowing you to hook into the model's operation for logging, debugging, or other purposes. The CallbackMethods class defines the names of the callback methods that can be used. These methods are: - `on_megatron_step_start` - `on_megatron_microbatch_start` - `on_megatron_microbatch_callback` - `on_megatron_microbatch_end` - `on_megatron_reduce_microbatches_start` - `on_megatron_reduce_microbatches_end` - `on_megatron_log_step_end` - `on_megatron_step_end` Each of these methods corresponds to a specific stage in the model's operation. You can define these methods in your callback functions to perform specific actions at these stages. There is no need for the class to be a subclass of a specific parent class. As long as the class contains the methods outlined above, it can be used as a callback. """ def __init__(self, callbacks=None) -> None: self.callbacks = defaultdict(list) if callbacks: self.add(*callbacks) def add(self, *callbacks) -> "CallbackConnector": """ Adds callback functions to the connector. Parameters ---------- *callbacks : CallbackT One or more callback functions to add. Returns ------- CallbackConnector The CallbackConnector instance to allow method chaining. """ _pl_callback = None try: import lightning.pytorch as pl _pl_callback = pl.Callback except ImportError: pass megatron_methods = {m for m in dir(CallbackMethods) if m.startswith("on") and not hasattr(_pl_callback, m)} for callback in callbacks: if isinstance(callback, CallbackConnector): # Handle CallbackConnector instance: merge its callbacks for event_name, event_callbacks in callback.callbacks.items(): self.callbacks[event_name].extend(event_callbacks) else: for method in megatron_methods: if hasattr(callback, method) and callable(getattr(callback, method)): self.callbacks[method].append(callback) return self def event(self, name: str, *args, **kwargs) -> None: """ Triggers an event and calls all associated callbacks. Parameters ---------- name : str The name of the event to trigger. *args : Any Positional arguments to pass to the callbacks. **kwargs : Any Keyword arguments to pass to the callbacks. """ for callback in self.callbacks.get(name, []): callback_method = getattr(callback, name, None) if callable(callback_method): # Inspect the callback method to determine accepted arguments sig = inspect.signature(callback_method) params = sig.parameters.values() # Check for *args and **kwargs in the callback method accepts_var_args = any(p.kind == p.VAR_POSITIONAL for p in params) accepts_var_kwargs = any(p.kind == p.VAR_KEYWORD for p in params) if accepts_var_args and accepts_var_kwargs: # If both *args and **kwargs are accepted, pass them directly callback_method(*args, **kwargs) elif accepts_var_args: # If only *args is accepted, filter kwargs filtered_kwargs = {k: v for k, v in kwargs.items() if k in sig.parameters} callback_method(*args, **filtered_kwargs) elif accepts_var_kwargs: # If only **kwargs is accepted, filter args filtered_args = [ arg for arg, param in zip(args, params) if param.kind in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD) ] callback_method(*filtered_args, **kwargs) else: # If neither is accepted, filter both args and kwargs filtered_args = [ arg for arg, param in zip(args, params) if param.kind in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD) ] filtered_kwargs = {k: v for k, v in kwargs.items() if k in sig.parameters} callback_method(*filtered_args, **filtered_kwargs) def transform_event(self, name: str, obj: T, **kwargs) -> T: """ Triggers an event that allows callbacks to transform and return an object. This method applies a series of potential transformations to the input object by calling registered callbacks. Each callback has the opportunity to modify and return a new version of the object. Parameters ---------- name : str The name of the event to trigger. obj : T The object to be potentially transformed by callbacks. **kwargs : Any Additional keyword arguments to pass to the callbacks. Returns ------- T The potentially transformed object. """ for callback in self.callbacks.get(name, []): callback_method = getattr(callback, name, None) if callable(callback_method): result = callback_method(obj, **kwargs) # Update obj if the callback returned a value of the same type if result is not None and isinstance(result, type(obj)): obj = result return obj def __add__(self, other) -> "CallbackConnector": """ Adds another CallbackConnector's callbacks to this one. Parameters ---------- other : CallbackConnector Another CallbackConnector instance to add. Returns ------- CallbackConnector A new CallbackConnector instance with combined callbacks. Raises ------ ValueError If `other` is not an instance of CallbackConnector. """ if not isinstance(other, CallbackConnector): raise ValueError("Can only add CallbackConnector instances") new_connector = CallbackConnector() new_connector.callbacks = defaultdict(list, {**self.callbacks, **other.callbacks}) return new_connector def __iadd__(self, other) -> "CallbackConnector": """ In-place addition of another CallbackConnector's callbacks. Parameters ---------- other : CallbackConnector Another CallbackConnector instance to add. Returns ------- CallbackConnector The same CallbackConnector instance with combined callbacks. Raises ------ ValueError If `other` is not an instance of CallbackConnector. """ if not isinstance(other, CallbackConnector): raise ValueError("Can only add CallbackConnector instances") for event_name, event_callbacks in other.callbacks.items(): self.callbacks[event_name].extend(event_callbacks) return self def __contains__(self, callback_object) -> bool: """ Check if the given callback object is registered in the CallbackConnector. If the object has none of the methods of CallbackMethods, it returns True. If it has at least one of the methods, it checks if it's inside the CallbackConnector object. Args: callback_object: The object to check for callback methods. Returns ------- bool: True if the callback object is registered, False otherwise. """ # Get all method names from CallbackMethods class callback_methods = [ func for func in dir(CallbackMethods) if callable(getattr(CallbackMethods, func)) and not func.startswith("__") ] # Check if the object has any method that's in CallbackMethods has_any_callback_method = any(hasattr(callback_object, method) for method in callback_methods) # If the object has none of the methods, it's not a callback if not has_any_callback_method: return True # If it has at least one of the methods, check if it's registered in the CallbackConnector for event_callbacks in self.callbacks.values(): if callback_object in event_callbacks: return True return False @dataclass class MegatronStep(Generic[ModelT, DataT]): """ Represents a single step in the Megatron model's training or inference process. This class encapsulates all the necessary information and logic for executing a single step (forward pass, and optionally backward pass) in the Megatron model. It handles data preparation, model execution, and provides utilities for inferring batch sizes and sequence lengths. Attributes: pipeline (MegatronParallel[ModelT]): The Megatron parallel model pipeline. data (Union[DataT, Iterator[DataT], List[Iterator[DataT]]]): Input data for the step. forward_step_func (Callable): Function to perform the forward step. forward_only (bool): If True, only perform forward pass (no backward pass). micro_batch_size (Optional[int]): Size of each micro-batch. seq_length (Optional[int]): Sequence length for the current step. num_microbatches (Optional[int]): Number of micro-batches in this step. decoder_seq_length (Optional[int]): Sequence length of decoder (used only in encoder-decoder style models) for the current step. Type Parameters: ModelT: The type of the model being used. DataT: The type of the input data. """ pipeline: MegatronParallel[ModelT] data: Union[DataT, Iterator[DataT], List[Iterator[DataT]]] forward_step_func: Callable forward_only: bool micro_batch_size: Optional[int] = None seq_length: Optional[int] = None num_microbatches: Optional[int] = None step_i: Optional[int] = None decoder_seq_length: Optional[int] = None @classmethod def infer( cls, pipeline: MegatronParallel[ModelT], data: DataT, forward_step_func: Callable, forward_only: bool, micro_batch_size: Optional[int] = None, seq_length: Optional[int] = None, num_microbatches: Optional[int] = None, step_i: Optional[int] = None, ) -> "MegatronStep[ModelT, DataT]": """ Creates a MegatronStep instance, inferring missing parameters if possible. This method attempts to infer the micro_batch_size, seq_length, and num_microbatches from the provided data if they are not explicitly specified. Args: pipeline (MegatronParallel[ModelT]): The Megatron parallel model pipeline. data (DataT): Input data for the step. forward_step_func (Callable): Function to perform the forward step. forward_only (bool): If True, only perform forward pass (no backward pass). micro_batch_size (Optional[int]): Size of each micro-batch. seq_length (Optional[int]): Sequence length for the current step. num_microbatches (Optional[int]): Number of micro-batches in this step. step_i (Optional[int]): Step index for the current step. Returns: MegatronStep[ModelT, DataT]: An instance of MegatronStep with inferred parameters. """ if step_i is None and pipeline.trainer: step_i = pipeline.trainer.global_step return cls( pipeline=pipeline, data=data, forward_step_func=forward_step_func, forward_only=forward_only, micro_batch_size=micro_batch_size or cls.infer_micro_batch_size(data), seq_length=seq_length or cls.infer_seq_length(data), num_microbatches=num_microbatches or cls.infer_num_microbatches(data), step_i=step_i, ) def __call__(self) -> List[Any]: """ Executes the Megatron step. This method performs the forward (and optionally backward) pass using the configured forward_backward_func. It ensures all necessary parameters are set before execution. Returns: List[Any]: The output of the forward_backward_func, typically containing loss values and other relevant information. Raises: ValueError: If any of num_microbatches, seq_length, or micro_batch_size is not set. """ if self.num_microbatches is None: raise ValueError("num_microbatches is not set") if self.seq_length is None: raise ValueError("seq_length is not set") if self.micro_batch_size is None: raise ValueError("micro_batch_size is not set") data_iterator, seq_length = self.get_data_iterator_and_seq_length() seq_length = seq_length or self.seq_length return self.forward_backward_func( forward_step_func=self.forward_step_func, data_iterator=data_iterator, model=self.model, num_microbatches=self.num_microbatches, seq_length=seq_length, micro_batch_size=self.micro_batch_size, forward_only=self.forward_only, decoder_seq_length=self.decoder_seq_length, adjust_tensor_shapes_fn=self.adjust_tensor_shapes_fn, ) def to_data_iterator_list( self, data: Union[DataT, Iterator[DataT], List[Iterator[DataT]]] ) -> List[Iterator[DataT]]: """ Converts the provided data into a list of iterators. This method is used to convert the input data into a list of iterators that can be used for data parallelism in the Megatron model. The input data can be a single data item, an iterator, or a list of iterators. Args: data (Union[DataT, Iterator[DataT], List[Iterator[DataT]]]): The input data to be converted into a list of iterators. Returns: List[Iterator[DataT]]: A list of iterators created from the input data. """ if isinstance(data, Iterator): return _make_data_iterator_list(self.model, data) elif isinstance(data, list) and all(isinstance(item, Iterator) for item in data): # If data is already a list of iterators, return it as is return cast(List[Iterator[DataT]], data) # For a single data item or any other type, wrap it in an iterator and return as a list return cast(List[Iterator[DataT]], [iter([data])]) @classmethod def infer_micro_batch_size(cls, data: DataT) -> Optional[int]: """ Infers the micro-batch size from the input data. This method attempts to determine the micro-batch size by examining the first dimension of the input data. It handles various data types including Tensors, dictionaries, lists, and tuples. Args: data (DataT): The input data from which to infer the micro-batch size. Returns: Optional[int]: The inferred micro-batch size, or None if it cannot be determined. """ if isinstance(data, Tensor): return data.size(0) elif isinstance(data, dict): return cls.infer_micro_batch_size(next(iter(data.values()))) elif isinstance(data, (list, tuple)) and len(data) > 0: _tensor: Tensor = data[0] return cls.infer_micro_batch_size(_tensor) return None @classmethod def infer_seq_length(cls, data: DataT) -> Optional[int]: """ Infers the sequence length from the input data. This method attempts to determine the sequence length by examining the second dimension of the input data. It handles various data types including Tensors, dictionaries, lists, and tuples. Args: data (DataT): The input data from which to infer the sequence length. Returns: Optional[int]: The inferred sequence length, or None if it cannot be determined. """ if isinstance(data, Tensor): # TODO: Check if at least 2 dims return data.size(1) elif isinstance(data, dict): return cls.infer_seq_length(next(iter(data.values()))) elif isinstance(data, (list, tuple)) and len(data) > 0: _tensor: Tensor = data[0] return cls.infer_seq_length(_tensor) return None @classmethod def infer_num_microbatches(cls, data: DataT) -> Optional[int]: """ Infers the number of micro-batches from the input data. Currently, this method assumes a single micro-batch for common data types. It may need to be extended for more complex data structures or use cases. Args: data (DataT): The input data from which to infer the number of micro-batches. Returns: Optional[int]: The inferred number of micro-batches, or None if it cannot be determined. """ if isinstance(data, (dict, tuple, list, Tensor)): return 1 return None @property def model(self) -> Union[ModelT, List[ModelT]]: """ Retrieves the model or list of models from the pipeline. Returns: Union[ModelT, List[ModelT]]: The model or list of models in the pipeline. """ return self.pipeline.pipeline @property def pl_module(self) -> "pl.LightningModule": """ Retrieves the PyTorch Lightning module from the pipeline. Returns: pl.LightningModule: The PyTorch Lightning module. """ return self.pipeline.module @property def trainer(self) -> "pl.Trainer": """ Retrieves the PyTorch Lightning trainer from the pipeline. Returns: pl.Trainer: The PyTorch Lightning trainer. """ return self.pipeline.trainer @functools.cached_property def forward_backward_func(self) -> "MegatronStepProtocol": """ Retrieves the forward-backward function for the Megatron model. This property uses Megatron's scheduling to get the appropriate forward-backward function based on the current configuration. Returns: MegatronStepProtocol: The function to perform forward and backward passes. """ from megatron.core.pipeline_parallel.schedules import get_forward_backward_func config = self.model[0].config if isinstance(self.model, list) else self.model.config if ( hasattr(config, "enable_cuda_graph") and config.enable_cuda_graph and config.cuda_graph_scope == "full_iteration" ): if HAVE_FULL_CUDA_GRAPH: return FullCudaGraphWrapper(get_forward_backward_func()) else: raise ImportError( f"FullCudaGraphWrapper is not available in this version of megatron.core ({mcore_import_msg}). " "Please upgrade megatron.core to >= 0.14.0 to use full iteration CUDA graphs." ) return get_forward_backward_func() @property def adjust_tensor_shapes_fn(self) -> Union[Callable, None]: """ Retrieves the function to adjust send and receive tensor shapes in Megatron-Core's forward pass. Currently only used during non-interleaved pipelining for Distillation. Returns: Union[Callable, None]: The function which takes in tensor shapes and returns updated shapes, or None if not applicable. """ from nemo.collections.llm.modelopt.distill.utils import get_tensor_shapes_adjust_fn_for_distillation return get_tensor_shapes_adjust_fn_for_distillation( self.model, self.seq_length, self.micro_batch_size, self.decoder_seq_length, self.forward_only, ) def get_data_iterator_and_seq_length(self) -> Tuple[List[Iterator[DataT]], Optional[int]]: """ Converts the provided data into a list of iterators. For finetuning, where sequence length is different for each step, this function also outputs the sequence length of the current batch. Returns: List[Iterator[DataT]]: A list of iterators created from the input data. """ has_dataloader_idx = False if self.has_global_batch_sampler: batch_data = next(self.data) if isinstance(batch_data, tuple) and len(batch_data) == 3: batch, batch_idx, dataloader_idx = batch_data has_dataloader_idx = True else: batch, batch_idx, dataloader_idx = batch_data[0], None, None # finetuning can have dynamic sequence lengths seq_length = batch['tokens'].size(1) if 'tokens' in batch else None from nemo.collections.nlp.modules.common.megatron.utils import get_iterator_k_split data = get_iterator_k_split(batch, self.num_microbatches, True) if has_dataloader_idx: packed_data = [(d, batch_idx, dataloader_idx) for d in data] data = itertools.chain(packed_data) else: data = self.data # for pretraining (fixed sequence length), we use seq_length inferred from the data sampler. seq_length = None data = self.to_data_iterator_list(data) return data, seq_length @functools.cached_property def has_global_batch_sampler(self) -> bool: # FIXME: cleanup the following code is here for backwards compatibility with nemo1. # The "batch" sampler is a nemo1 sampler. It requires some custom code here to use # (if use_global_batch_sampler), by default we shouldn't use this "batch" sampler probably. if getattr(self.trainer, "datamodule", None) is not None: use_global_batch_sampler = self.trainer.datamodule.data_sampler.dataloader_type == 'batch' elif getattr(self.trainer, "predict_dataloaders", None) is not None: from nemo.collections.common.data.data_samplers import MegatronPretrainingBatchSampler # noqa: I001 # The batch_sampler gets injected into the dataloader by the data_sampler. When doing # predict without a datamodule we can look inside the dataloader's batch_sampler to see # if it is the nemo1 style sampler that we need to handle specially below. use_global_batch_sampler = isinstance( self.trainer.predict_dataloaders.batch_sampler, MegatronPretrainingBatchSampler ) else: use_global_batch_sampler = False return use_global_batch_sampler class CallbackMethods: """ Defines callback methods for various stages of the Megatron model's execution. This class outlines the structure for callbacks that can be implemented to hook into different phases of the Megatron model's training or inference process. Each method represents a specific point in the execution where custom logic can be inserted. """ def on_megatron_step_start(self, step: MegatronStep) -> MegatronStep: """ Called at the beginning of each Megatron step. This method is invoked before any processing of the step begins. It allows for any necessary setup or initialization for the step. Args: step (MegatronStep): The MegatronStep object representing the current step. Returns: MegatronStep: The potentially modified MegatronStep object. """ ... def on_megatron_microbatches_start(self, step: MegatronStep) -> None: """ Called before processing of microbatches begins. This method is invoked just before the model starts processing the microbatches within a step. It can be used for any preparations needed before microbatch processing. Args: step (MegatronStep): The MegatronStep object representing the current step. """ ... def on_megatron_microbatch_start( self, step: MegatronStep, batch: DataT, forward_callback: "MegatronLossReduction", ) -> None: """ Called at the start of processing each microbatch. This method is invoked before the forward pass of each microbatch. It provides access to the current batch data and the loss reduction callback. Args: step (MegatronStep): The MegatronStep object representing the current step. batch (DataT): The current microbatch of data being processed. forward_callback (MegatronLossReduction): The callback for loss reduction. """ ... def on_megatron_microbatch_end( self, step: MegatronStep, batch: DataT, forward_callback: "MegatronLossReduction", output: Any, ) -> None: """ Called at the end of processing each microbatch. This method is invoked after the forward pass of each microbatch. It provides access to the processed batch, the loss reduction callback, and the output of the forward pass. Args: step (MegatronStep): The MegatronStep object representing the current step. batch (DataT): The microbatch of data that was processed. forward_callback (MegatronLossReduction): The callback for loss reduction. output (Any): The output from the forward pass for this microbatch. """ ... def on_megatron_microbatches_end(self, step: MegatronStep, microbatch_outputs: List[Any]) -> None: """ Called after all microbatches in a step have been processed. This method is invoked once all microbatches within a step have been processed. It provides access to the outputs from all microbatches. Args: step (MegatronStep): The MegatronStep object representing the current step. microbatch_outputs (List[Any]): A list of outputs from all processed microbatches. """ ... def on_megatron_reduce_microbatches_start( self, step: MegatronStep, microbatch_outputs: List[Any], ) -> None: """ Called before the reduction of microbatch outputs begins. This method is invoked just before the model starts reducing (e.g., averaging) the outputs from all microbatches. It can be used for any preparations needed before the reduction process. Args: step (MegatronStep): The MegatronStep object representing the current step. microbatch_outputs (List[Any]): A list of outputs from all processed microbatches. """ ... def on_megatron_reduce_microbatches_end( self, step: MegatronStep, microbatch_outputs: List[Any], loss_reduction: "MegatronLossReduction", reduced: Union[torch.Tensor, Dict[str, torch.Tensor]], ) -> None: """ Called after the reduction of microbatch outputs is complete. This method is invoked after the model has finished reducing the outputs from all microbatches. It provides access to the original microbatch outputs, the loss reduction object, and the final reduced output. Args: step (MegatronStep): The MegatronStep object representing the current step. microbatch_outputs (List[Any]): A list of outputs from all processed microbatches. loss_reduction (MegatronLossReduction): The object used for loss reduction. reduced (Union[torch.Tensor, Dict[str, torch.Tensor]]): The final reduced output. """ ... def on_megatron_step_end( self, step: MegatronStep, microbatch_outputs: List[Any], reduced: Optional[Union[torch.Tensor, Dict[str, torch.Tensor]]] = None, ) -> None: """ Called at the end of each Megatron step. This method is invoked after all processing for a step is complete. It provides access to the outputs from all microbatches and the final reduced output (if available). Args: step (MegatronStep): The MegatronStep object representing the current step. microbatch_outputs (List[Any]): A list of outputs from all processed microbatches. reduced (Optional[Union[torch.Tensor, Dict[str, torch.Tensor]]]): The final reduced output, if available. This may be None for certain configurations or pipeline stages. """ ... ReductionT = TypeVar("ReductionT") class MegatronLossReduction(nn.Module, Generic[DataT, ReductionT]): def __init__(self) -> None: super(MegatronLossReduction, self).__init__() self.batch = None self.register_forward_pre_hook(self._pre_forward_hook) def setup(self, batch) -> None: self.batch = batch def _pre_forward_hook(self, module, x): return (self.batch,) + x def forward(self, batch: DataT, forward_out: torch.Tensor) -> Tuple[torch.Tensor, ReductionT]: raise NotImplementedError("Must be implemented by subclass.") @abc.abstractmethod def reduce(self, losses_reduced_per_micro_batch: Sequence[ReductionT]) -> torch.Tensor: raise NotImplementedError("Must be implemented by subclass.") @runtime_checkable class MegatronCallbackProtocol(Protocol): def __call__(self, tensor: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: ... @runtime_checkable class MegatronStepProtocol(Protocol): def __call__( self, *, forward_step_func, data_iterator: Union[Iterator, List[Iterator]], model: Union[torch.nn.Module, List[torch.nn.Module]], num_microbatches: int, seq_length: int, micro_batch_size: int, decoder_seq_length: Optional[int] = None, forward_only: bool = False, collect_non_loss_data: bool = False, ) -> list: ... def _calc_number_of_params(model: List[nn.Module]) -> int: assert isinstance(model, list) return sum([sum([p.nelement() for p in model_module.parameters()]) for model_module in model]) def _calc_number_of_trainable_params(model: List[nn.Module]) -> int: assert isinstance(model, list) return sum([sum([p.numel() for p in model_module.parameters() if p.requires_grad]) for model_module in model]) def is_list_of_iterators(var) -> bool: if not isinstance(var, list): return False return all(isinstance(item, collections.abc.Iterator) for item in var) def _make_data_iterator_list(model, data_iterator: Iterator) -> List[Iterator]: """Convert data iterator into form expected by Megatron. With interleaved pipeline parallelism, Megatron expects a list of one data iterator per model chunk. Each model chunk independently gets data from its data iterator, so we need to interact with the data iterator multiple times for each microbatch step. Instead of incorporating this logic into the data loader, we cache the iterator's output to the first model chunk and reuse it in the other model chunks. """ if not isinstance(model, list) or len(model) == 1: return data_iterator # TODO @tmoon: Remove # TODO @tmoon: Use once available in Megatron-LM # return DataIteratorList([data_iterator]) class CachingIterator: """Iterator wrapper that caches values.""" class Proxy: """Returns values from caching iterator wrapper. Assumed to never advance past the caching iterator. """ def __init__(self): self.cache = queue.Queue() def __iter__(self): return self def __next__(self): return self.cache.get_nowait() def __init__(self, iterator: Iterator): self.iterator = iterator self.proxies = [] def make_proxy(self): self.proxies.append(CachingIterator.Proxy()) return self.proxies[-1] def __iter__(self): return self def __next__(self): val = next(self.iterator) for proxy in self.proxies: proxy.cache.put(val) return val # Make list of iterator wrappers iters = [CachingIterator(data_iterator)] while len(iters) < len(model): iters.append(iters[0].make_proxy()) return iters # TODO @tmoon: Remove # TODO @tmoon: Use once available in Megatron-LM # return DataIteratorList(iters) class MaskedTokenLossReduction(MegatronLossReduction): def __init__(self, validation_step: bool = False, val_drop_last: bool = True) -> None: super().__init__() self.validation_step = validation_step self.val_drop_last = val_drop_last def forward( self, batch: Dict[str, torch.Tensor], forward_out: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, torch.Tensor]]: """Taken from: https://github.com/NVIDIA/NeMo/blob/main /nemo/collections/nlp/models/language_modeling/megatron_gpt_model.py#L951-L976 .""" # neva returns (logits, loss_mask) if isinstance(forward_out, tuple): forward_out, loss_mask = forward_out batch["loss_mask"] = loss_mask loss_sum, num_valid_tokens = masked_token_loss(forward_out, batch["loss_mask"]) if self.validation_step and not self.val_drop_last and loss_sum.isnan(): assert num_valid_tokens == 0, "Got NaN loss with non-empty input" loss_sum = torch.zeros_like(num_valid_tokens) num_valid_tokens = num_valid_tokens.clone().detach().to(torch.int) loss_sum_and_ub_size = torch.cat([loss_sum.clone().detach().view(1), num_valid_tokens.view(1)]) return loss_sum, num_valid_tokens, {"loss_sum_and_ub_size": loss_sum_and_ub_size} def reduce(self, losses_reduced_per_micro_batch) -> torch.Tensor: """Taken from: https://github.com/NVIDIA/NeMo/blob/main /nemo/collections/nlp/models/language_modeling/megatron_gpt_model.py#L535-L552 .""" if losses_reduced_per_micro_batch: if "avg" in losses_reduced_per_micro_batch[0]: # legacy behavior, average over the number of microbatches avg = [x["avg"] for x in losses_reduced_per_micro_batch] loss = torch.cat(avg).mean() return loss from megatron.core import parallel_state loss_sum_and_ub_size = [ x["loss_sum_and_ub_size"] for x in losses_reduced_per_micro_batch if x["loss_sum_and_ub_size"][1] > 0 ] loss = ( torch.vstack(loss_sum_and_ub_size).sum(dim=0) if len(loss_sum_and_ub_size) > 0 else torch.tensor([0.0, 0.0], device=torch.cuda.current_device()) ) torch.distributed.all_reduce( loss, group=parallel_state.get_data_parallel_group(with_context_parallel=True), ) # average over the total number of tokens across the global batch. loss = loss[0] / loss[1] return loss return torch.tensor(0.0, device=torch.cuda.current_device()) class MaskedTokenLossReductionWithLossMask(MaskedTokenLossReduction): def forward( self, batch: Dict[str, torch.Tensor], forward_out: Tuple[torch.Tensor, torch.Tensor], ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: # expecting returns (token_level_loss, loss_mask) forward_out, loss_mask = forward_out batch["loss_mask"] = loss_mask return super().forward(batch, forward_out) def masked_token_loss(tensor: Tensor, mask: Tensor): """ The function takes as input per-token loss and masks non-required values. """ losses = tensor.view(-1).float() loss_mask = mask.view(-1).float() loss_sum = torch.sum(losses * loss_mask) # sequence level nll num_valid_tokens = loss_mask.sum() return loss_sum, num_valid_tokens @contextmanager def moe_loss_tracker_ctx(): from megatron.core.transformer.moe.moe_utils import ( clear_aux_losses_tracker, reduce_aux_losses_tracker_across_ranks, ) reduce_aux_losses_tracker_across_ranks() try: yield finally: clear_aux_losses_tracker() @torch.no_grad() def aggregate_moe_loss_stats(loss_scale=1.0): with moe_loss_tracker_ctx(): tracker = get_moe_layer_wise_logging_tracker() aux_losses = {k: v['values'].float() * loss_scale for k, v in tracker.items()} total_loss_dict = {} for name, loss_list in aux_losses.items(): if name not in total_loss_dict: total_loss_dict[name] = 0 total_loss_dict[name] += loss_list.mean().item() return total_loss_dict