# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import logging import os from itertools import chain from typing import List, Literal, Optional import torch from lightning.pytorch.overrides.distributed import _IndexBatchSamplerWrapper from torch.utils.data import DataLoader, Dataset # TODO: remove? unused def create_dataloader( dataset: "Dataset", drop_last: bool = True, pad_samples_to_global_batch_size=False, **kwargs ) -> DataLoader: """ """ output = DataLoader(dataset, collate_fn=dataset.collate_fn, **kwargs) output._drop_last = drop_last # noqa: SLF001 output._pad_samples_to_global_batch_size = pad_samples_to_global_batch_size # noqa: SLF001 return output def setup_microbatch_calculator( global_rank: int, micro_batch_size: int, global_batch_size: int, rampup_batch_size: Optional[List[int]] = None, ) -> None: """ Initializes the data for distributed training by setting up the microbatch calculator based on the provided global rank and data configuration. This function checks if the microbatch calculator has already been initialized. If it has, the function validates that the current configuration matches the initialized settings. If the calculator has not been initialized, it sets up a new one with the provided configuration. Args: global_rank (int): The global rank of the current process. config (DataConfig): The data configuration object containing settings for global batch size, micro batch size, data parallel size, and optional ramp-up batch size. Raises ------ Exception: If the microbatch calculator has already been initialized with different settings. """ from nemo.lightning._strategy_lib import NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE from nemo.utils import AppState try: from megatron.core.num_microbatches_calculator import ( ConstantNumMicroBatchesCalculator, get_current_global_batch_size, get_micro_batch_size, get_num_microbatches, init_num_microbatches_calculator, ) MCORE_MB_CALCULATOR = True except (ImportError, ModuleNotFoundError): logging.warning("Megatron num_microbatches_calculator not found, using Apex version.") from apex.transformer.microbatches import ConstantNumMicroBatches as ConstantNumMicroBatchesCalculator from apex.transformer.pipeline_parallel.utils import ( get_current_global_batch_size, get_micro_batch_size, get_num_microbatches, ) from apex.transformer.pipeline_parallel.utils import ( setup_microbatch_calculator as init_num_microbatches_calculator, ) MCORE_MB_CALCULATOR = False app_state = AppState() if os.environ.get(NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE, "false").lower() == "true": init_global_rank = app_state.global_rank else: init_global_rank = global_rank if MCORE_MB_CALCULATOR: from megatron.core.num_microbatches_calculator import _GLOBAL_NUM_MICROBATCHES_CALCULATOR if _GLOBAL_NUM_MICROBATCHES_CALCULATOR is None: init_num_microbatches_calculator( rank=init_global_rank, global_batch_size=global_batch_size, micro_batch_size=micro_batch_size, data_parallel_size=app_state.data_parallel_size, rampup_batch_size=rampup_batch_size, decrease_batch_size_if_needed=False, ) else: if isinstance(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, ConstantNumMicroBatchesCalculator): assert get_current_global_batch_size() == global_batch_size assert get_micro_batch_size() == micro_batch_size assert get_num_microbatches() == global_batch_size // (micro_batch_size * app_state.data_parallel_size) else: raise Exception("Microbatch calculator already initialized.") else: from apex.transformer.pipeline_parallel.utils import _GLOBAL_NUM_MICROBATCHES_CALCULATOR if _GLOBAL_NUM_MICROBATCHES_CALCULATOR is None: init_num_microbatches_calculator( rank=init_global_rank, global_batch_size=global_batch_size, micro_batch_size=micro_batch_size, data_parallel_size=app_state.data_parallel_size, rampup_batch_size=rampup_batch_size, decrease_batch_size_if_needed=False, ) else: if isinstance(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, ConstantNumMicroBatchesCalculator): assert get_current_global_batch_size() == global_batch_size assert get_micro_batch_size() == micro_batch_size assert get_num_microbatches() == global_batch_size // (micro_batch_size * app_state.data_parallel_size) else: raise Exception("Microbatch calculator already initialized.") def add_megatron_sampler( dataloader: DataLoader, micro_batch_size: int, global_batch_size: int, rampup_batch_size: Optional[List[int]] = None, consumed_samples: int = 0, dataloader_type: Literal["single", "cyclic", "batch"] = "single", drop_last: bool = True, pad_samples_to_global_batch_size: bool = False, dataloader_mode: Literal["train", "validation", "test", "predict"] = "train", rank: int = 0, world_size: int = 1, # data_sharding: bool = False ) -> DataLoader: """ This function takes an existing PyTorch `DataLoader` and configures it to use a Megatron sampler. The Megatron sampler is responsible for splitting the data into batches during training with Megatron. Args: dataloader (DataLoader): The original PyTorch DataLoader to wrap. micro_batch_size (int): The size of each micro-batch. global_batch_size (int): The effective size of the training batch across all data parallel devices. rampup_batch_size (Optional[List[int]]): A list of target batch sizes for a gradual rampup schedule during training (optional). consumed_samples (int, optional): The number of samples consumed before starting this iteration (defaults to 0). dataloader_type (Literal["single", "cyclic", "batch"], optional): The type of Megatron sampler to use. Valid options are: - "single": Uses `MegatronPretrainingSampler` for single pass data sampling. - "cyclic": Uses `MegatronPretrainingRandomSampler` for cyclic data sampling. - "batch": Uses `MegatronPretrainingBatchSampler` for batch sampling. This is the option to use for fine-tuning workloads, where sequence lengths are variable between samples. Sampling the entire global batch together ensures that sequences in a global batch are padded to the same lengths. Defaults to "single". drop_last (bool, optional): Whether to drop the last incomplete batch (defaults to True). pad_samples_to_global_batch_size (bool, optional): Whether to pad the last incomplete batch to the `global_batch_size` (defaults to False, only applies when `drop_last` is False). dataloader_mode (Literal["train", "validation", "test", "predict"]): The mode of dataloader. Returns: DataLoader: A new DataLoader instance with the configured Megatron sampler. """ if dataloader_type == 'single': batch_sampler = MegatronPretrainingSampler( total_samples=len(dataloader.dataset), consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, global_batch_size=global_batch_size, rampup_batch_size=rampup_batch_size, data_parallel_rank=rank, data_parallel_size=world_size, drop_last=drop_last, pad_samples_to_global_batch_size=pad_samples_to_global_batch_size, ) elif dataloader_type == 'cyclic': batch_sampler = MegatronPretrainingRandomSampler( total_samples=len(dataloader.dataset), consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, data_parallel_rank=rank, data_parallel_size=world_size, drop_last=drop_last, # data_sharding=data_sharding ) elif dataloader_type == 'batch': from nemo.collections.common.data.data_samplers import MegatronPretrainingBatchSampler batch_sampler = MegatronPretrainingBatchSampler( total_samples=len(dataloader.dataset), consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, global_batch_size=global_batch_size, data_parallel_rank=rank, data_parallel_size=world_size, drop_last=drop_last, pad_samples_to_global_batch_size=not drop_last, ) else: raise Exception(f'{dataloader_type} dataloader type is not supported.') if dataloader_mode in ["test", "predict"]: batch_sampler = _IndexBatchSamplerWrapper(batch_sampler) # BatchSampler wrapper to capture its indices return DataLoader( dataloader.dataset, batch_sampler=batch_sampler, num_workers=dataloader.num_workers, pin_memory=dataloader.pin_memory, persistent_workers=dataloader.persistent_workers, collate_fn=dataloader.collate_fn, ) class WrappedDataLoader(DataLoader): """Wrapper around torch DataLoader which stores the dataloader mode""" def __init__(self, mode="train", **dataloader_kwargs): super().__init__(**dataloader_kwargs) self.mode = mode # TODO: Replace this with megatron.core.data.data_samplers after we upgrade class BaseMegatronSampler: """ """ def __init__( self, total_samples: int, consumed_samples: int, micro_batch_size: int, data_parallel_rank: int, data_parallel_size: int, drop_last: bool = True, global_batch_size: Optional[int] = None, rampup_batch_size: Optional[list] = None, pad_samples_to_global_batch_size: Optional[bool] = False, ) -> None: # Sanity checks. if total_samples <= 0: raise RuntimeError(f"no sample to consume: {total_samples}") if micro_batch_size <= 0: raise RuntimeError(f"micro_batch_size size must be greater than 0, but {micro_batch_size}") if data_parallel_size <= 0: raise RuntimeError(f"data parallel size must be greater than 0, but {data_parallel_size}") if data_parallel_rank >= data_parallel_size: raise RuntimeError( "data_parallel_rank should be smaller than data size, but " f"{data_parallel_rank} >= {data_parallel_size}" ) if global_batch_size is not None and rampup_batch_size is None: if global_batch_size % (micro_batch_size * data_parallel_size) != 0: raise RuntimeError( f"`global_batch_size` ({global_batch_size}) is not divisible by " f"`micro_batch_size ({micro_batch_size}) x data_parallel_size " f"({data_parallel_size})`" ) if pad_samples_to_global_batch_size and global_batch_size is None: raise RuntimeError( "`pad_samples_to_global_batch_size` can be `True` only when " "`global_batch_size` is set to an integer value" ) # Keep a copy of input params for later use. self.total_samples = total_samples self.consumed_samples = consumed_samples self.micro_batch_size = micro_batch_size self.data_parallel_rank = data_parallel_rank self.micro_batch_times_data_parallel_size = self.micro_batch_size * data_parallel_size self.drop_last = drop_last self.global_batch_size = global_batch_size self.pad_samples_to_global_batch_size = pad_samples_to_global_batch_size logging.info( f"Instantiating MegatronPretrainingSampler with total_samples: {total_samples} and" f" consumed_samples: {consumed_samples}" ) def __len__(self): if self.global_batch_size is not None: if self.drop_last: num_global_batches = self.total_samples // self.global_batch_size else: num_global_batches = (self.total_samples + self.global_batch_size - 1) // self.global_batch_size # return len of dataloader in terms of micro batches to avoid discrepancy between len of dataloader and # num of batches fetched (as training step fetches in terms of micro batches) return num_global_batches * (self.global_batch_size // self.micro_batch_times_data_parallel_size) else: return (self.total_samples - 1) // self.micro_batch_times_data_parallel_size + 1 @abc.abstractmethod def __iter__(self): ... class MegatronPretrainingSampler(BaseMegatronSampler): """ """ def __init__( self, total_samples: int, consumed_samples: int, micro_batch_size: int, data_parallel_rank: int, data_parallel_size: int, drop_last: bool = True, global_batch_size: Optional[int] = None, rampup_batch_size: Optional[list] = None, pad_samples_to_global_batch_size: Optional[bool] = False, ): super().__init__( total_samples=total_samples, consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, data_parallel_rank=data_parallel_rank, data_parallel_size=data_parallel_size, drop_last=drop_last, global_batch_size=global_batch_size, rampup_batch_size=rampup_batch_size, pad_samples_to_global_batch_size=pad_samples_to_global_batch_size, ) if consumed_samples >= total_samples: raise RuntimeError(f"no samples left to consume: {consumed_samples}, {total_samples}") def get_start_end_idx(self): """ """ start_idx = self.data_parallel_rank * self.micro_batch_size end_idx = start_idx + self.micro_batch_size return start_idx, end_idx def __iter__(self): batch = [] # Last batch will be dropped if drop_last is not set False indices = range(self.consumed_samples, self.total_samples) if (not self.drop_last) and self.pad_samples_to_global_batch_size: pad_samples_num = -len(indices) % self.global_batch_size pad_indices = range(-1, -pad_samples_num - 1, -1) indices = chain(indices, pad_indices) for idx in indices: batch.append(idx) if len(batch) == self.micro_batch_times_data_parallel_size: start_idx, end_idx = self.get_start_end_idx() yield batch[start_idx:end_idx] batch = [] # Check the last partial batch and see drop_last is set if len(batch) > 0 and not self.drop_last: assert ( not self.pad_samples_to_global_batch_size ), "with pad_samples_to_global_batch_size all batches should be complete" start_idx, end_idx = self.get_start_end_idx() yield batch[start_idx:end_idx] class MegatronPretrainingRandomSampler(BaseMegatronSampler): """ """ def __init__( self, total_samples: int, consumed_samples: int, micro_batch_size: int, data_parallel_rank: int, data_parallel_size: int, drop_last: bool = True, global_batch_size: Optional[int] = None, pad_samples_to_global_batch_size: Optional[bool] = False, seed: int = 0, ) -> None: super().__init__( total_samples=total_samples, consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, data_parallel_rank=data_parallel_rank, data_parallel_size=data_parallel_size, drop_last=drop_last, global_batch_size=global_batch_size, pad_samples_to_global_batch_size=pad_samples_to_global_batch_size, ) assert ( not pad_samples_to_global_batch_size ), "`MegatronPretrainingRandomSampler` does not support sample padding" if (not drop_last) and self.micro_batch_times_data_parallel_size > 1: raise RuntimeError( "`MegatronPretrainingRandomSampler` does not support drop_last=False when " "micro_batch_size * data_parallel_size > 1. " "Please reduce your MBS and data parallelism to 1 if you want to use drop_last=False, " "or switch to drop_last=True to avoid this error." ) self.last_batch_size = self.total_samples % self.micro_batch_times_data_parallel_size self.seed = seed def __len__(self): active_total_samples = self.total_samples - (self.last_batch_size if self.drop_last else 0) num_available_samples = active_total_samples - self.consumed_samples % active_total_samples if self.global_batch_size is not None: if self.drop_last: num_global_batches = num_available_samples // self.global_batch_size else: num_global_batches = (num_available_samples + self.global_batch_size - 1) // self.global_batch_size # return len of dataloader in terms of micro batches to avoid discrepancy between len of dataloader and # num of batches fetched (as training step fetches in terms of micro batches) return num_global_batches * (self.global_batch_size // self.micro_batch_times_data_parallel_size) else: if self.drop_last: return num_available_samples // self.micro_batch_times_data_parallel_size else: return (num_available_samples - 1) // self.micro_batch_times_data_parallel_size def __iter__(self): active_total_samples = self.total_samples - self.last_batch_size self.epoch = self.consumed_samples // active_total_samples current_epoch_samples = self.consumed_samples % active_total_samples assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0 # data sharding and random sampling data_parallel_size = self.micro_batch_times_data_parallel_size // self.micro_batch_size bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) * self.micro_batch_size bucket_offset = current_epoch_samples // data_parallel_size start_idx = self.data_parallel_rank * bucket_size g = torch.Generator() g.manual_seed(self.seed + self.epoch) random_idx = torch.randperm(bucket_size, generator=g).tolist() idx_range = [start_idx + x for x in random_idx[bucket_offset:]] batch = [] # Last batch if not complete will be dropped. for idx in idx_range: batch.append(idx) if len(batch) == self.micro_batch_size: self.consumed_samples += self.micro_batch_times_data_parallel_size yield batch batch = [] # Check the last partial batch and see drop_last is set if len(batch) > 0 and not self.drop_last: yield batch