# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from lightning.pytorch import Trainer from omegaconf import OmegaConf from nemo.collections.speechlm2 import DataModule, DuplexS2SDataset, DuplexS2SModel from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager from nemo.utils.trainer_utils import resolve_trainer_cfg torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) @hydra_runner(config_path="conf", config_name="s2s_duplex") def train(cfg): OmegaConf.resolve(cfg) torch.distributed.init_process_group(backend="nccl") torch.set_float32_matmul_precision("medium") torch.backends.cudnn.allow_tf32 = True trainer = Trainer(**resolve_trainer_cfg(cfg.trainer)) log_dir = exp_manager(trainer, cfg.get("exp_manager", None)) OmegaConf.save(cfg, log_dir / "exp_config.yaml") with trainer.init_module(): model = DuplexS2SModel(OmegaConf.to_container(cfg.model, resolve=True)) dataset = DuplexS2SDataset( tokenizer=model.tokenizer, frame_length=cfg.data.frame_length, source_sample_rate=cfg.data.source_sample_rate, target_sample_rate=cfg.data.target_sample_rate, input_roles=cfg.data.input_roles, output_roles=cfg.data.output_roles, ) datamodule = DataModule(cfg.data, tokenizer=model.tokenizer, dataset=dataset) trainer.fit(model, datamodule) if __name__ == "__main__": train()