# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re from typing import Dict, List, Optional, Union import numpy as np import sentencepiece import torch from nemo.collections.common.parts.utils import if_exist from nemo.collections.common.tokenizers.chat_template_mixin import ChatTemplateMixin from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.utils import logging __all__ = ['SentencePieceTokenizer', 'create_spt_model'] class SentencePieceTokenizer(TokenizerSpec, ChatTemplateMixin): """Sentencepiecetokenizer https://github.com/google/sentencepiece. Args: model_path: path to sentence piece tokenizer model. To create the model use create_spt_model() special_tokens: either list of special tokens or dictionary of token name to token value legacy: when set to True, the previous behavior of the SentecePiece wrapper will be restored, including the possibility to add special tokens inside wrapper. ignore_extra_whitespaces: whether to ignore extra whitespaces in the input text while encoding. Note: This is done for the current models tokenizers that don't handle extra whitespaces as by default tokenizer learned to ignore it. To check if the tokenizer by default ignores extra whitespaces refer to `self.removed_extra_spaces` attribute of the tokenizer. We added a parameter to process_asr_tokenizer.py for upcoming models to handle it inbuilt. """ def __init__( self, model_path: str, special_tokens: Optional[Union[Dict[str, str], List[str]]] = None, legacy: bool = False, ignore_extra_whitespaces: bool = True, chat_template: Optional[Dict] = None, trim_spm_separator_after_special_token=True, spm_separator='▁', ): self.chat_template = chat_template if not model_path or not os.path.exists(model_path): raise ValueError(f"model_path: {model_path} is invalid") self.tokenizer = sentencepiece.SentencePieceProcessor() self.tokenizer.Load(model_path) self.original_vocab_size = self.tokenizer.get_piece_size() self.vocab_size = self.tokenizer.get_piece_size() self.legacy = legacy self.ignore_extra_whitespaces = ignore_extra_whitespaces # using special symbol for extra_space token, so it is not likely to be in the vocabulary self.extra_space_token = '☯' self.special_token_to_id = {} self.id_to_special_token = {} self.trim_spm_separator_after_special_token = trim_spm_separator_after_special_token self.spm_separator = spm_separator self.spm_separator_id = self.tokenizer.piece_to_id(spm_separator) if special_tokens: if not self.legacy: raise ValueError( "Special tokens must be None when legacy is set to False. Provide special tokens at train time." ) self.add_special_tokens(special_tokens) self.removed_extra_spaces = self.tokenizer.encode_as_pieces('x y') == self.tokenizer.encode_as_pieces('x y') self.space_sensitive = self.text_to_tokens('x y') != self.text_to_tokens('x') + self.text_to_tokens('y') def text_to_tokens(self, text): """Converts input text to a list of tokens. If legacy mode is enabled, handles special tokens separately. Args: text: The input string to tokenize. Returns: A list of string tokens. """ if self.removed_extra_spaces and not self.ignore_extra_whitespaces: text = re.sub(r'(?<= )(?= )|^ | $', f' {self.extra_space_token} ', text) if self.legacy: tokens = [] cur_idx = 0 while 1: st_indices = {} for token in self.special_token_to_id: try: st_indices[token] = text[cur_idx:].index(token) except ValueError: continue if len(st_indices) == 0: break next_special_token = min(st_indices, key=st_indices.get) next_start_idx = cur_idx + st_indices[next_special_token] # tokens between the last special token and the next special token text_tokens = self.tokenizer.encode_as_pieces(text[cur_idx:next_start_idx]) # Chat-templates insert a space between a special token and first word (e.g. # "[INST] who") which is tokenized as instead of # . if ( self.trim_spm_separator_after_special_token and len(tokens) > 0 and tokens[-1] in self.special_token_to_id and len(text_tokens) > 0 and text_tokens[0] == self.spm_separator ): text_tokens.pop(0) # Add the text tokens between the last special token and this one tokens.extend(text_tokens) # add the next special token tokens.append(next_special_token) # increment cur_idx = next_start_idx + len(next_special_token) tokens.extend(self.tokenizer.encode_as_pieces(text[cur_idx:])) else: tokens = self.tokenizer.encode_as_pieces(text) if self.removed_extra_spaces and not self.ignore_extra_whitespaces: tokens = list(filter(lambda x: x != self.extra_space_token, tokens)) return tokens def text_to_ids(self, text, sample_alpha=None): """Converts input text to a list of token IDs. Handles chat formatting or raw string tokenization depending on input type. Args: text: A string or list representing chat template inputs. sample_alpha: Optional float to enable subword sampling for data augmentation. Returns: A list of token IDs. """ if isinstance(text, str): return self._text_to_ids(text, sample_alpha) elif isinstance(text, list): return self.apply_chat_template(text) else: raise ValueError(f"Expected either str or list input, but got {type(text)}") def _text_to_ids(self, text, sample_alpha=None): """Internal method to convert text to token IDs, handling optional sampling and special token logic. Args: text: Input string. sample_alpha: Optional alpha value for stochastic subword sampling. Returns: A list of token IDs. """ if self.removed_extra_spaces and not self.ignore_extra_whitespaces: text = re.sub(r'(?<= )(?= )|^ | $', f' {self.extra_space_token} ', text).rstrip() if self.legacy: ids = [] cur_idx = 0 # Account for special tokens while 1: st_indices = {} for token in self.special_token_to_id: try: st_indices[token] = text[cur_idx:].index(token) except ValueError: continue if len(st_indices) == 0: break next_special_token = min(st_indices, key=st_indices.get) next_start_idx = cur_idx + st_indices[next_special_token] # tokens between the last special token and the next special token text_tokens = self.tokenizer.encode(text[cur_idx:next_start_idx]) # Chat-templates insert a space between a special token and first word (e.g. # "[INST] who") which is tokenized as instead of # . if ( self.trim_spm_separator_after_special_token and len(ids) > 0 and ids[-1] in self.id_to_special_token and len(text_tokens) > 0 and text_tokens[0] == self.spm_separator_id ): text_tokens.pop(0) # Add the text tokens between the last special token and this one ids.extend(text_tokens) # add the next special token ids.append(self.special_token_to_id[next_special_token]) # increment cur_idx = next_start_idx + len(next_special_token) if self.removed_extra_spaces and not self.ignore_extra_whitespaces: ids.extend(self._text_to_ids_extra_space(text[cur_idx:])) else: ids.extend(self.tokenizer.encode_as_ids(text[cur_idx:])) return ids if self.removed_extra_spaces and not self.ignore_extra_whitespaces: return self._text_to_ids_extra_space(text, sample_alpha) if sample_alpha is not None: return self.tokenizer.encode_as_ids(text, enable_sampling=True, alpha=sample_alpha, nbest_size=-1) else: return self.tokenizer.encode_as_ids(text) def _text_to_ids_extra_space(self, text, sample_alpha=None): """Tokenizes text while preserving extra space tokens for legacy mode. Args: text: Input string. sample_alpha: Optional alpha value for subword sampling. Returns: A list of token IDs with preserved extra space markers. """ ids = [] encoding_kwargs = {} if sample_alpha is not None: encoding_kwargs = {'enable_sampling': True, 'alpha': sample_alpha, 'nbest_size': -1} for part in text.split(self.extra_space_token): if not part: continue part += self.extra_space_token part_ids = self.tokenizer.encode_as_ids(part, **encoding_kwargs) ids.extend(part_ids[:-1]) return ids def tokens_to_text(self, tokens): """Converts a list of tokens back to the corresponding string. Args: tokens: A list of string tokens or a tensor/array of token IDs. Returns: The decoded string. """ if isinstance(tokens, (np.ndarray, torch.Tensor)): tokens = tokens.tolist() return self.tokenizer.decode_pieces(tokens) def ids_to_text(self, ids): """Decodes a list of token IDs into a string, handling special tokens if in legacy mode. Args: ids: A list or tensor/array of token IDs. Returns: The decoded string. """ if isinstance(ids, (np.ndarray, torch.Tensor)): ids = ids.tolist() if self.legacy: text = "" last_i = 0 for i, id in enumerate(ids): if id in self.id_to_special_token: text += self.tokenizer.decode_ids(ids[last_i:i]) + " " text += self.id_to_special_token[id] + " " last_i = i + 1 text += self.tokenizer.decode_ids(ids[last_i:]) return text.strip() return self.tokenizer.decode_ids(ids) def token_to_id(self, token): """Gets the ID corresponding to a token. Args: token: Token string. Returns: Token ID as an integer. """ if self.legacy and token in self.special_token_to_id: return self.special_token_to_id[token] return self.tokenizer.piece_to_id(token) def ids_to_tokens(self, ids): """Converts a list of token IDs into corresponding token strings. Args: ids: A list or array/tensor of token IDs. Returns: List of string tokens. """ if isinstance(ids, (np.ndarray, torch.Tensor)): ids = ids.tolist() tokens = [] for id in ids: if id >= self.original_vocab_size: tokens.append(self.id_to_special_token[id]) else: tokens.append(self.tokenizer.id_to_piece(id)) return tokens def tokens_to_ids(self, tokens: Union[str, List[str]], tokens_to_skip: List[str] = []) -> Union[int, List[int]]: """Converts one or more tokens into their respective IDs, skipping any specified tokens. Args: tokens: A string or list of token strings. tokens_to_skip: List of tokens to ignore during conversion. Returns: A single ID or list of IDs. """ if isinstance(tokens, str): tokens = [tokens] ids = [] for token in tokens: if token not in tokens_to_skip: ids.append(self.token_to_id(token)) return ids def add_special_tokens(self, special_tokens): """Adds new special tokens to the tokenizer's vocabulary (only if legacy=True). Args: special_tokens: List or dict of special tokens to add. Raises: AttributeError: If not in legacy mode. ValueError: If the input is not a list or dictionary. """ if not self.legacy: raise AttributeError("Special Token addition does not work when legacy is set to False.") if isinstance(special_tokens, list): for token in special_tokens: if ( self.tokenizer.piece_to_id(token) == self.tokenizer.unk_id() and token not in self.special_token_to_id ): self.special_token_to_id[token] = self.vocab_size self.id_to_special_token[self.vocab_size] = token self.vocab_size += 1 elif self.tokenizer.piece_to_id(token) != self.tokenizer.unk_id(): self.special_token_to_id[token] = self.tokenizer.piece_to_id(token) self.id_to_special_token[self.special_token_to_id[token]] = token elif isinstance(special_tokens, dict): for token_name, token in special_tokens.items(): setattr(self, token_name, token) if ( self.tokenizer.piece_to_id(token) == self.tokenizer.unk_id() and token not in self.special_token_to_id ): self.special_token_to_id[token] = self.vocab_size self.id_to_special_token[self.vocab_size] = token self.vocab_size += 1 elif self.tokenizer.piece_to_id(token) != self.tokenizer.unk_id(): self.special_token_to_id[token] = self.tokenizer.piece_to_id(token) self.id_to_special_token[self.special_token_to_id[token]] = token else: raise ValueError(f"Expected special_tokens to be a list or a dict {str(type(special_tokens))}") @property def pad_id(self): """Returns the ID for the padding token.""" if self.legacy: pad_id = self.tokens_to_ids([self.pad_token])[0] else: pad_id = self.tokenizer.pad_id() return pad_id @property def bos_id(self): """Returns the ID for the beginning-of-sequence token.""" if self.legacy: bos_id = self.tokens_to_ids([self.bos_token])[0] else: bos_id = self.tokenizer.bos_id() return bos_id @property def eos_id(self): """Returns the ID for the end-of-sequence token.""" if self.legacy: eos_id = self.tokens_to_ids([self.eos_token])[0] else: eos_id = self.tokenizer.eos_id() return eos_id @property def sep_id(self): """Returns the ID for the separator token (only in legacy mode).""" if self.legacy: return self.tokens_to_ids([self.sep_token])[0] else: raise NameError("Use function token_to_id to retrieve special tokens other than unk, pad, bos, and eos.") @property def cls_id(self): """Returns the ID for the classification token (only in legacy mode).""" if self.legacy: return self.tokens_to_ids([self.cls_token])[0] else: raise NameError("Use function token_to_id to retrieve special tokens other than unk, pad, bos, and eos.") @property def mask_id(self): """Returns the ID for the mask token (only in legacy mode).""" if self.legacy: return self.tokens_to_ids([self.mask_token])[0] else: raise NameError("Use function token_to_id to retrieve special tokens other than unk, pad, bos, and eos.") @property def unk_id(self): """Returns the ID for the unknown token.""" return self.tokenizer.unk_id() @property def additional_special_tokens_ids(self): """Returns a list of the additional special tokens (excluding bos, eos, pad, unk). Used to return sentinel tokens for e.g. T5. """ special_tokens = set( [self.bos_token, self.eos_token, self.pad_token, self.mask_token, self.cls_token, self.sep_token] ) return [v for k, v in self.special_token_to_id.items() if k not in special_tokens] @property def vocab(self): """Returns the combined vocabulary list, including base and special tokens.""" main_vocab = [self.tokenizer.id_to_piece(id) for id in range(self.tokenizer.get_piece_size())] special_tokens = [ self.id_to_special_token[self.original_vocab_size + i] for i in range(self.vocab_size - self.original_vocab_size) ] return main_vocab + special_tokens def create_spt_model( data_file: str, vocab_size: int, sample_size: int, do_lower_case: bool, tokenizer_type: str = 'unigram', output_dir: Optional[str] = None, character_coverage: float = 1.0, train_extremely_large_corpus: bool = False, max_sentencepiece_length: int = -1, bos: bool = False, eos: bool = False, pad: bool = False, control_symbols: List[str] = None, user_defined_symbols: List[str] = None, byte_fallback: bool = False, split_digits: bool = False, split_by_whitespace: bool = True, split_by_unicode_script: bool = True, remove_extra_whitespaces: bool = False, ): """Creates sentence piece tokenizer model from data file. Args: data_file: data file vocab_size: vocabulary size sample_size: maximum size of sentences the trainer loads do_lower_case: if text should be lower cased before tokenizer model is created character_coverage: float value between 0 and 1 (as a percentage). For languages with a vast charset, can be < 1.0, but for all other languages, it should be set as 1.0 output_dir: folder to save created tokenizer model. If not specified will store at data_file/../spt folder train_extremely_large_corpus: If training on huge datasets, pass this flag to allow SentencePiece to build the tokenizer. max_sentencepiece_length: Limits the maximum length of the SentencePiece subword that can be constructed. By default, no limit is placed. bos: when True, bos token "" is added to the vocabulary. eos: when True, eos token "" is added to the vocabulary. pad: when True, pad token "" is added to the vocabulary. control_symbols: control symbols to add to tokenizer, as defined by sentencepiece. These tokens get removed at decode time and are not encoded from the text - can only be added to the input programatically. user_defined_symbols: user symbols to add to tokenizer, as defined by sentencepiece. These tokens remain in the decoded text and are encoded automatically when present in the input text. byte_fallback: If , fallback to a byte sequence of the character. split_digits: If true, digits are split into individual tokens. split_by_whitespace: Whether to respect white space while creating subwords. If False, will learn merges across whitespace. split_by_unicode_script: Whether to include multiple Unicode scripts. Ex. is Arabic diacritics which are considered part of the letter (عِدَّةُ). remove_extra_whitespaces: Whether to remove leading, trailing, and duplicate internal whitespace. If true, will skip double spaces during encoding. """ if not data_file or not os.path.exists(data_file): raise ValueError(f"data_file must be valid file path, but got {data_file}") data_dir = os.path.dirname(data_file) vocab = [] special_tokens = ["", "", "", ""] if not output_dir: output_dir = f'{data_dir}/spt' if if_exist(output_dir, ['tokenizer.model']): logging.info(f"tokenizer model {output_dir}/tokenizer.model already exists") return f'{output_dir}/tokenizer.model', f'{output_dir}/vocab.txt' logging.info(f'Processing {data_file} and store at {output_dir}') os.makedirs(output_dir, exist_ok=True) cmd = ( f"--input={data_file} --model_prefix={output_dir}/tokenizer " f"--vocab_size={vocab_size} " f"--shuffle_input_sentence=true --hard_vocab_limit=false " f"--model_type={tokenizer_type} " f"--character_coverage={character_coverage}" ) pad_id = 3 if not bos: pad_id -= 1 cmd += " --bos_id=-1" if not eos: pad_id -= 1 cmd += " --eos_id=-1" if pad: cmd += f" --pad_id={pad_id}" if control_symbols: control_string = (",").join(control_symbols) cmd += f" --control_symbols={control_string}" special_tokens += control_symbols if user_defined_symbols: user_string = (",").join(user_defined_symbols) cmd += f" --user_defined_symbols={user_string}" special_tokens += user_defined_symbols if do_lower_case: cmd += " --normalization_rule_name=nmt_nfkc_cf" if sample_size > 0: cmd += f" --input_sentence_size={sample_size}" if train_extremely_large_corpus: cmd += " --train_extremely_large_corpus=true" if max_sentencepiece_length >= 0: cmd += f" --max_sentencepiece_length={max_sentencepiece_length}" if byte_fallback: cmd += " --byte_fallback=true" if split_digits: cmd += " --split_digits=true" if not split_by_whitespace: cmd += " --split_by_whitespace=false" if not split_by_unicode_script: cmd += " --split_by_unicode_script=false" if not remove_extra_whitespaces: cmd += " --remove_extra_whitespaces=false" sentencepiece.SentencePieceTrainer.Train(cmd) # Add BERT control symbols tokens = [] # Encoding arg is added for compatibility with systems which enforce # ASCII encoding in Python. Sentencepiece always uses Unicode (UTF8). with open(f"{output_dir}/tokenizer.vocab", "r", encoding="utf8") as f: # Read tokens from each line and parse for vocab for line in f: piece = line.split("\t")[0] if piece in special_tokens: # skip special tokens continue token = piece[1:] if piece.startswith("▁") else f"##{piece}" if len(token) > 0: tokens.append(token) else: tokens.append(piece[0]) vocab.extend(tokens) # Save vocabulary to output file vocab_file = f'{output_dir}/vocab.txt' with open(vocab_file, "w", encoding="utf8") as f: for token in vocab: f.write(f"{token}\n") return f'{output_dir}/tokenizer.model', vocab_file