subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import Mock
import lightning.pytorch as pl
import pytest
import torch
from torch.optim import SGD
from nemo.lightning.pytorch.optim.base import LRSchedulerModule
from nemo.lightning.pytorch.optim.pytorch import PytorchOptimizerModule
class DummyModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 2)
def forward(self, x):
return self.layer(x)
@pytest.fixture
def dummy_model():
return DummyModel()
@pytest.fixture
def optimizer_fn():
return Mock(side_effect=lambda params: SGD(params, lr=0.01, weight_decay=0.1))
@pytest.fixture
def lr_scheduler():
return Mock(spec=LRSchedulerModule)
@pytest.fixture
def optimizer_module(optimizer_fn, lr_scheduler):
return PytorchOptimizerModule(optimizer_fn, lr_scheduler)
def test_optimizer_module_initialization(optimizer_module, optimizer_fn, lr_scheduler):
assert optimizer_module.optimizer_fn == optimizer_fn
assert optimizer_module.lr_scheduler == lr_scheduler
assert callable(optimizer_module.no_weight_decay_cond)
assert optimizer_module.lr_mult == 1.0
def test_optimizer_creation(dummy_model, optimizer_module):
optimizer = optimizer_module.optimizers(dummy_model)
assert isinstance(optimizer, list)
assert len(optimizer) > 0
assert isinstance(optimizer[0], torch.optim.Optimizer)
def test_connect_method(dummy_model, optimizer_module):
optimizer_module.connect(dummy_model)