subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
from typing import List, Optional
import numpy as np
import omegaconf
import torch
import transformers
import wandb
from hydra.utils import instantiate
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import WandbLogger
from omegaconf import DictConfig
from torch import nn
from torch.nn import functional as F
from transformers import AlbertTokenizer
from nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers import (
EnglishCharsTokenizer,
EnglishPhonemesTokenizer,
)
from nemo.collections.tts.losses.aligner_loss import BinLoss, ForwardSumLoss
from nemo.collections.tts.models.base import SpectrogramGenerator
from nemo.collections.tts.modules.fastpitch import average_features, regulate_len
from nemo.collections.tts.parts.utils.helpers import (
binarize_attention_parallel,
g2p_backward_compatible_support,
get_mask_from_lengths,
plot_pitch_to_numpy,
plot_spectrogram_to_numpy,
)
from nemo.core import Exportable
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import (
LengthsType,
LogprobsType,
MelSpectrogramType,
ProbsType,
RegressionValuesType,
TokenDurationType,
TokenIndex,
TokenLogDurationType,
)
from nemo.core.neural_types.neural_type import NeuralType
from nemo.utils import logging, model_utils
class MixerTTSModel(SpectrogramGenerator, Exportable):
"""Mixer-TTS and Mixer-TTS-X models (https://arxiv.org/abs/2110.03584) that is used to generate mel spectrogram from text."""
def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
# Convert to Hydra 1.0 compatible DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
cfg = model_utils.maybe_update_config_version(cfg)
# Setup normalizer
self.normalizer = None
self.text_normalizer_call = None
self.text_normalizer_call_kwargs = {}
self._setup_normalizer(cfg)
# Setup tokenizer
self.tokenizer = None
self._setup_tokenizer(cfg)
assert self.tokenizer is not None
num_tokens = len(self.tokenizer.tokens)
self.tokenizer_pad = self.tokenizer.pad
self.tokenizer_unk = self.tokenizer.oov
super().__init__(cfg=cfg, trainer=trainer)
self.pitch_loss_scale = cfg.pitch_loss_scale
self.durs_loss_scale = cfg.durs_loss_scale
self.mel_loss_scale = cfg.mel_loss_scale
self.aligner = instantiate(cfg.alignment_module)
self.forward_sum_loss = ForwardSumLoss()
self.bin_loss = BinLoss()
self.add_bin_loss = False
self.bin_loss_scale = 0.0
self.bin_loss_start_ratio = cfg.bin_loss_start_ratio
self.bin_loss_warmup_epochs = cfg.bin_loss_warmup_epochs
self.cond_on_lm_embeddings = cfg.get("cond_on_lm_embeddings", False)
if self.cond_on_lm_embeddings:
self.lm_padding_value = (
self._train_dl.dataset.lm_padding_value
if self._train_dl is not None
else self._get_lm_padding_value(cfg.lm_model)
)
self.lm_embeddings = self._get_lm_embeddings(cfg.lm_model)
self.lm_embeddings.weight.requires_grad = False
self.self_attention_module = instantiate(
cfg.self_attention_module, n_lm_tokens_channels=self.lm_embeddings.weight.shape[1]
)
self.encoder = instantiate(cfg.encoder, num_tokens=num_tokens, padding_idx=self.tokenizer_pad)
self.symbol_emb = self.encoder.to_embed
self.duration_predictor = instantiate(cfg.duration_predictor)
self.pitch_mean, self.pitch_std = float(cfg.pitch_mean), float(cfg.pitch_std)
self.pitch_predictor = instantiate(cfg.pitch_predictor)
self.pitch_emb = instantiate(cfg.pitch_emb)
self.preprocessor = instantiate(cfg.preprocessor)
self.decoder = instantiate(cfg.decoder)
self.proj = nn.Linear(self.decoder.d_model, cfg.n_mel_channels)
def _setup_tokenizer(self, cfg):
text_tokenizer_kwargs = {}
if "g2p" in cfg.text_tokenizer:
# for backward compatibility
if (
self._is_model_being_restored()
and (cfg.text_tokenizer.g2p.get('_target_', None) is not None)
and cfg.text_tokenizer.g2p["_target_"].startswith("nemo_text_processing.g2p")
):
cfg.text_tokenizer.g2p["_target_"] = g2p_backward_compatible_support(
cfg.text_tokenizer.g2p["_target_"]
)
g2p_kwargs = {}
if "phoneme_dict" in cfg.text_tokenizer.g2p:
g2p_kwargs["phoneme_dict"] = self.register_artifact(
'text_tokenizer.g2p.phoneme_dict',
cfg.text_tokenizer.g2p.phoneme_dict,
)
if "heteronyms" in cfg.text_tokenizer.g2p:
g2p_kwargs["heteronyms"] = self.register_artifact(
'text_tokenizer.g2p.heteronyms',
cfg.text_tokenizer.g2p.heteronyms,
)
text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p, **g2p_kwargs)
self.tokenizer = instantiate(cfg.text_tokenizer, **text_tokenizer_kwargs)
def _get_lm_model_tokenizer(self, lm_model="albert"):
if getattr(self, "_lm_model_tokenizer", None) is not None:
return self._lm_model_tokenizer
if self._train_dl is not None and self._train_dl.dataset is not None:
self._lm_model_tokenizer = self._train_dl.dataset.lm_model_tokenizer
if lm_model == "albert":
self._lm_model_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
else:
raise NotImplementedError(
f"{lm_model} lm model is not supported. Only albert is supported at this moment."
)
return self._lm_model_tokenizer
def _get_lm_embeddings(self, lm_model="albert"):
if lm_model == "albert":
return transformers.AlbertModel.from_pretrained('albert-base-v2').embeddings.word_embeddings
else:
raise NotImplementedError(
f"{lm_model} lm model is not supported. Only albert is supported at this moment."
)
def _get_lm_padding_value(self, lm_model="albert"):
if lm_model == "albert":
return transformers.AlbertTokenizer.from_pretrained('albert-base-v2')._convert_token_to_id('<pad>')
else:
raise NotImplementedError(
f"{lm_model} lm model is not supported. Only albert is supported at this moment."
)
def _metrics(
self,
true_durs,
true_text_len,
pred_durs,
true_pitch,
pred_pitch,
true_spect=None,
pred_spect=None,
true_spect_len=None,
attn_logprob=None,
attn_soft=None,
attn_hard=None,
attn_hard_dur=None,
):
text_mask = get_mask_from_lengths(true_text_len)
mel_mask = get_mask_from_lengths(true_spect_len)
loss = 0.0
# Dur loss and metrics
durs_loss = F.mse_loss(pred_durs, (true_durs + 1).float().log(), reduction='none')
durs_loss = durs_loss * text_mask.float()
durs_loss = durs_loss.sum() / text_mask.sum()
durs_pred = pred_durs.exp() - 1
durs_pred = torch.clamp_min(durs_pred, min=0)
durs_pred = durs_pred.round().long()
acc = ((true_durs == durs_pred) * text_mask).sum().float() / text_mask.sum() * 100
acc_dist_1 = (((true_durs - durs_pred).abs() <= 1) * text_mask).sum().float() / text_mask.sum() * 100
acc_dist_3 = (((true_durs - durs_pred).abs() <= 3) * text_mask).sum().float() / text_mask.sum() * 100
pred_spect = pred_spect.transpose(1, 2)
# Mel loss
mel_loss = F.mse_loss(pred_spect, true_spect, reduction='none').mean(dim=-2)
mel_loss = mel_loss * mel_mask.float()
mel_loss = mel_loss.sum() / mel_mask.sum()
loss = loss + self.durs_loss_scale * durs_loss + self.mel_loss_scale * mel_loss
# Aligner loss
bin_loss, ctc_loss = None, None
ctc_loss = self.forward_sum_loss(attn_logprob=attn_logprob, in_lens=true_text_len, out_lens=true_spect_len)
loss = loss + ctc_loss
if self.add_bin_loss:
bin_loss = self.bin_loss(hard_attention=attn_hard, soft_attention=attn_soft)
loss = loss + self.bin_loss_scale * bin_loss
true_avg_pitch = average_features(true_pitch.unsqueeze(1), attn_hard_dur).squeeze(1)
# Pitch loss
pitch_loss = F.mse_loss(pred_pitch, true_avg_pitch, reduction='none') # noqa
pitch_loss = (pitch_loss * text_mask).sum() / text_mask.sum()
loss = loss + self.pitch_loss_scale * pitch_loss
return loss, durs_loss, acc, acc_dist_1, acc_dist_3, pitch_loss, mel_loss, ctc_loss, bin_loss
@torch.jit.unused
def run_aligner(self, text, text_len, text_mask, spect, spect_len, attn_prior):
text_emb = self.symbol_emb(text)
attn_soft, attn_logprob = self.aligner(
spect,
text_emb.permute(0, 2, 1),
mask=text_mask == 0,
attn_prior=attn_prior,
)
attn_hard = binarize_attention_parallel(attn_soft, text_len, spect_len)
attn_hard_dur = attn_hard.sum(2)[:, 0, :]
assert torch.all(torch.eq(attn_hard_dur.sum(dim=1), spect_len))
return attn_soft, attn_logprob, attn_hard, attn_hard_dur
@typecheck(
input_types={
"text": NeuralType(('B', 'T_text'), TokenIndex()),
"text_len": NeuralType(('B',), LengthsType()),
"pitch": NeuralType(('B', 'T_audio'), RegressionValuesType(), optional=True),
"spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType(), optional=True),
"spect_len": NeuralType(('B',), LengthsType(), optional=True),
"attn_prior": NeuralType(('B', 'T_spec', 'T_text'), ProbsType(), optional=True),
"lm_tokens": NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
},
output_types={
"pred_spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
"durs_predicted": NeuralType(('B', 'T_text'), TokenDurationType()),
"log_durs_predicted": NeuralType(('B', 'T_text'), TokenLogDurationType()),
"pitch_predicted": NeuralType(('B', 'T_text'), RegressionValuesType()),
"attn_soft": NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()),
"attn_logprob": NeuralType(('B', 'S', 'T_spec', 'T_text'), LogprobsType()),
"attn_hard": NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()),
"attn_hard_dur": NeuralType(('B', 'T_text'), TokenDurationType()),
},
)
def forward(self, text, text_len, pitch=None, spect=None, spect_len=None, attn_prior=None, lm_tokens=None):
if self.training:
assert pitch is not None
text_mask = get_mask_from_lengths(text_len).unsqueeze(2)
enc_out, enc_mask = self.encoder(text, text_mask)
# Aligner
attn_soft, attn_logprob, attn_hard, attn_hard_dur = None, None, None, None
if spect is not None:
attn_soft, attn_logprob, attn_hard, attn_hard_dur = self.run_aligner(
text, text_len, text_mask, spect, spect_len, attn_prior
)
if self.cond_on_lm_embeddings:
lm_emb = self.lm_embeddings(lm_tokens)
lm_features = self.self_attention_module(
enc_out, lm_emb, lm_emb, q_mask=enc_mask.squeeze(2), kv_mask=lm_tokens != self.lm_padding_value
)
# Duration predictor
log_durs_predicted = self.duration_predictor(enc_out, enc_mask)
durs_predicted = torch.clamp(log_durs_predicted.exp() - 1, 0)
# Pitch predictor
pitch_predicted = self.pitch_predictor(enc_out, enc_mask)
# Avg pitch, add pitch_emb
if not self.training:
if pitch is not None:
pitch = average_features(pitch.unsqueeze(1), attn_hard_dur).squeeze(1)
pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
else:
pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1))
else:
pitch = average_features(pitch.unsqueeze(1), attn_hard_dur).squeeze(1)
pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
enc_out = enc_out + pitch_emb.transpose(1, 2)
if self.cond_on_lm_embeddings:
enc_out = enc_out + lm_features
# Regulate length
len_regulated_enc_out, dec_lens = regulate_len(attn_hard_dur, enc_out)
dec_out, dec_lens = self.decoder(len_regulated_enc_out, get_mask_from_lengths(dec_lens).unsqueeze(2))
pred_spect = self.proj(dec_out)
return (
pred_spect,
durs_predicted,
log_durs_predicted,
pitch_predicted,
attn_soft,
attn_logprob,
attn_hard,
attn_hard_dur,
)
def infer(
self,
text,
text_len=None,
text_mask=None,
spect=None,
spect_len=None,
attn_prior=None,
use_gt_durs=False,
lm_tokens=None,
pitch=None,
):
if text_mask is None:
text_mask = get_mask_from_lengths(text_len).unsqueeze(2)
enc_out, enc_mask = self.encoder(text, text_mask)
# Aligner
attn_hard_dur = None
if use_gt_durs:
attn_soft, attn_logprob, attn_hard, attn_hard_dur = self.run_aligner(
text, text_len, text_mask, spect, spect_len, attn_prior
)
if self.cond_on_lm_embeddings:
lm_emb = self.lm_embeddings(lm_tokens)
lm_features = self.self_attention_module(
enc_out, lm_emb, lm_emb, q_mask=enc_mask.squeeze(2), kv_mask=lm_tokens != self.lm_padding_value
)
# Duration predictor
log_durs_predicted = self.duration_predictor(enc_out, enc_mask)
durs_predicted = torch.clamp(log_durs_predicted.exp() - 1, 0)
# Avg pitch, pitch predictor
if use_gt_durs and pitch is not None:
pitch = average_features(pitch.unsqueeze(1), attn_hard_dur).squeeze(1)
pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
else:
pitch_predicted = self.pitch_predictor(enc_out, enc_mask)
pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1))
# Add pitch emb
enc_out = enc_out + pitch_emb.transpose(1, 2)
if self.cond_on_lm_embeddings:
enc_out = enc_out + lm_features
if use_gt_durs:
if attn_hard_dur is not None:
len_regulated_enc_out, dec_lens = regulate_len(attn_hard_dur, enc_out)
else:
raise NotImplementedError
else:
len_regulated_enc_out, dec_lens = regulate_len(durs_predicted, enc_out)
dec_out, _ = self.decoder(len_regulated_enc_out, get_mask_from_lengths(dec_lens).unsqueeze(2))
pred_spect = self.proj(dec_out)
return pred_spect
def on_train_epoch_start(self):
bin_loss_start_epoch = np.ceil(self.bin_loss_start_ratio * self._trainer.max_epochs)
# Add bin loss when current_epoch >= bin_start_epoch
if not self.add_bin_loss and self.current_epoch >= bin_loss_start_epoch:
logging.info(f"Using hard attentions after epoch: {self.current_epoch}")
self.add_bin_loss = True
if self.add_bin_loss:
self.bin_loss_scale = min((self.current_epoch - bin_loss_start_epoch) / self.bin_loss_warmup_epochs, 1.0)
def training_step(self, batch, batch_idx):
attn_prior, lm_tokens = None, None
if self.cond_on_lm_embeddings:
audio, audio_len, text, text_len, attn_prior, pitch, _, lm_tokens = batch
else:
audio, audio_len, text, text_len, attn_prior, pitch, _ = batch
spect, spect_len = self.preprocessor(input_signal=audio, length=audio_len)
# pitch normalization
zero_pitch_idx = pitch == 0
pitch = (pitch - self.pitch_mean) / self.pitch_std
pitch[zero_pitch_idx] = 0.0
(
pred_spect,
_,
pred_log_durs,
pred_pitch,
attn_soft,
attn_logprob,
attn_hard,
attn_hard_dur,
) = self(
text=text,
text_len=text_len,
pitch=pitch,
spect=spect,
spect_len=spect_len,
attn_prior=attn_prior,
lm_tokens=lm_tokens,
)
(
loss,
durs_loss,
acc,
acc_dist_1,
acc_dist_3,
pitch_loss,
mel_loss,
ctc_loss,
bin_loss,
) = self._metrics(
pred_durs=pred_log_durs,
pred_pitch=pred_pitch,
true_durs=attn_hard_dur,
true_text_len=text_len,
true_pitch=pitch,
true_spect=spect,
pred_spect=pred_spect,
true_spect_len=spect_len,
attn_logprob=attn_logprob,
attn_soft=attn_soft,
attn_hard=attn_hard,
attn_hard_dur=attn_hard_dur,
)
train_log = {
'train_loss': loss,
'train_durs_loss': durs_loss,
'train_pitch_loss': torch.tensor(1.0).to(durs_loss.device) if pitch_loss is None else pitch_loss,
'train_mel_loss': mel_loss,
'train_durs_acc': acc,
'train_durs_acc_dist_3': acc_dist_3,
'train_ctc_loss': torch.tensor(1.0).to(durs_loss.device) if ctc_loss is None else ctc_loss,
'train_bin_loss': torch.tensor(1.0).to(durs_loss.device) if bin_loss is None else bin_loss,
}
return {'loss': loss, 'progress_bar': {k: v.detach() for k, v in train_log.items()}, 'log': train_log}
def validation_step(self, batch, batch_idx):
attn_prior, lm_tokens = None, None
if self.cond_on_lm_embeddings:
audio, audio_len, text, text_len, attn_prior, pitch, _, lm_tokens = batch
else:
audio, audio_len, text, text_len, attn_prior, pitch, _ = batch
spect, spect_len = self.preprocessor(input_signal=audio, length=audio_len)
# pitch normalization
zero_pitch_idx = pitch == 0
pitch = (pitch - self.pitch_mean) / self.pitch_std
pitch[zero_pitch_idx] = 0.0
(
pred_spect,
_,
pred_log_durs,
pred_pitch,
attn_soft,
attn_logprob,
attn_hard,
attn_hard_dur,
) = self(
text=text,
text_len=text_len,
pitch=pitch,
spect=spect,
spect_len=spect_len,
attn_prior=attn_prior,
lm_tokens=lm_tokens,
)
(
loss,
durs_loss,
acc,
acc_dist_1,
acc_dist_3,
pitch_loss,
mel_loss,
ctc_loss,
bin_loss,
) = self._metrics(
pred_durs=pred_log_durs,
pred_pitch=pred_pitch,
true_durs=attn_hard_dur,
true_text_len=text_len,
true_pitch=pitch,
true_spect=spect,
pred_spect=pred_spect,
true_spect_len=spect_len,
attn_logprob=attn_logprob,
attn_soft=attn_soft,
attn_hard=attn_hard,
attn_hard_dur=attn_hard_dur,
)
# without ground truth internal features except for durations
pred_spect, _, pred_log_durs, pred_pitch, attn_soft, attn_logprob, attn_hard, attn_hard_dur = self(
text=text,
text_len=text_len,
pitch=None,
spect=spect,
spect_len=spect_len,
attn_prior=attn_prior,
lm_tokens=lm_tokens,
)
*_, with_pred_features_mel_loss, _, _ = self._metrics(
pred_durs=pred_log_durs,
pred_pitch=pred_pitch,
true_durs=attn_hard_dur,
true_text_len=text_len,
true_pitch=pitch,
true_spect=spect,
pred_spect=pred_spect,
true_spect_len=spect_len,
attn_logprob=attn_logprob,
attn_soft=attn_soft,
attn_hard=attn_hard,
attn_hard_dur=attn_hard_dur,
)
val_log = {
'val_loss': loss,
'val_durs_loss': durs_loss,
'val_pitch_loss': torch.tensor(1.0).to(durs_loss.device) if pitch_loss is None else pitch_loss,
'val_mel_loss': mel_loss,
'val_with_pred_features_mel_loss': with_pred_features_mel_loss,
'val_durs_acc': acc,
'val_durs_acc_dist_3': acc_dist_3,
'val_ctc_loss': torch.tensor(1.0).to(durs_loss.device) if ctc_loss is None else ctc_loss,
'val_bin_loss': torch.tensor(1.0).to(durs_loss.device) if bin_loss is None else bin_loss,
}
self.log_dict(val_log, prog_bar=False, on_epoch=True, logger=True, sync_dist=True)
if batch_idx == 0 and self.current_epoch % 5 == 0 and isinstance(self.logger, WandbLogger):
specs = []
pitches = []
for i in range(min(3, spect.shape[0])):
specs += [
wandb.Image(
plot_spectrogram_to_numpy(spect[i, :, : spect_len[i]].data.cpu().numpy()),
caption=f"gt mel {i}",
),
wandb.Image(
plot_spectrogram_to_numpy(pred_spect.transpose(1, 2)[i, :, : spect_len[i]].data.cpu().numpy()),
caption=f"pred mel {i}",
),
]
pitches += [
wandb.Image(
plot_pitch_to_numpy(
average_features(pitch.unsqueeze(1), attn_hard_dur)
.squeeze(1)[i, : text_len[i]]
.data.cpu()
.numpy(),
ylim_range=[-2.5, 2.5],
),
caption=f"gt pitch {i}",
),
]
pitches += [
wandb.Image(
plot_pitch_to_numpy(pred_pitch[i, : text_len[i]].data.cpu().numpy(), ylim_range=[-2.5, 2.5]),
caption=f"pred pitch {i}",
),
]
self.logger.experiment.log({"specs": specs, "pitches": pitches})
@typecheck(
input_types={
"tokens": NeuralType(('B', 'T_text'), TokenIndex(), optional=True),
"tokens_len": NeuralType(('B'), LengthsType(), optional=True),
"lm_tokens": NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
"raw_texts": [NeuralType(optional=True)],
"lm_model": NeuralType(optional=True),
},
output_types={
"spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
},
)
def generate_spectrogram(
self,
tokens: Optional[torch.Tensor] = None,
tokens_len: Optional[torch.Tensor] = None,
lm_tokens: Optional[torch.Tensor] = None,
raw_texts: Optional[List[str]] = None,
norm_text_for_lm_model: bool = True,
lm_model: str = "albert",
):
if tokens is not None:
if tokens_len is None:
# It is assumed that padding is consecutive and only at the end
tokens_len = (tokens != self.tokenizer.pad).sum(dim=-1)
else:
if raw_texts is None:
raise ValueError("raw_texts must be specified if tokens is None")
t_seqs = [self.tokenizer(t) for t in raw_texts]
tokens = torch.nn.utils.rnn.pad_sequence(
sequences=[torch.tensor(t, dtype=torch.long, device=self.device) for t in t_seqs],
batch_first=True,
padding_value=self.tokenizer.pad,
)
tokens_len = torch.tensor([len(t) for t in t_seqs], dtype=torch.long, device=tokens.device)
if self.cond_on_lm_embeddings and lm_tokens is None:
if raw_texts is None:
raise ValueError("raw_texts must be specified if lm_tokens is None")
lm_model_tokenizer = self._get_lm_model_tokenizer(lm_model)
lm_padding_value = lm_model_tokenizer._convert_token_to_id('<pad>')
lm_space_value = lm_model_tokenizer._convert_token_to_id('▁')
assert isinstance(self.tokenizer, EnglishCharsTokenizer) or isinstance(
self.tokenizer, EnglishPhonemesTokenizer
)
if norm_text_for_lm_model and self.text_normalizer_call is not None:
raw_texts = [self.text_normalizer_call(t, **self.text_normalizer_call_kwargs) for t in raw_texts]
preprocess_texts_as_tts_input = [self.tokenizer.text_preprocessing_func(t) for t in raw_texts]
lm_tokens_as_ids_list = [
lm_model_tokenizer.encode(t, add_special_tokens=False) for t in preprocess_texts_as_tts_input
]
if self.tokenizer.pad_with_space:
lm_tokens_as_ids_list = [[lm_space_value] + t + [lm_space_value] for t in lm_tokens_as_ids_list]
lm_tokens = torch.full(
(len(lm_tokens_as_ids_list), max([len(t) for t in lm_tokens_as_ids_list])),
fill_value=lm_padding_value,
device=tokens.device,
)
for i, lm_tokens_i in enumerate(lm_tokens_as_ids_list):
lm_tokens[i, : len(lm_tokens_i)] = torch.tensor(lm_tokens_i, device=tokens.device)
pred_spect = self.infer(tokens, tokens_len, lm_tokens=lm_tokens).transpose(1, 2)
return pred_spect
def parse(self, text: str, normalize=True) -> torch.Tensor:
if self.training:
logging.warning("parse() is meant to be called in eval mode.")
if normalize and self.text_normalizer_call is not None:
text = self.text_normalizer_call(text, **self.text_normalizer_call_kwargs)
eval_phon_mode = contextlib.nullcontext()
if hasattr(self.tokenizer, "set_phone_prob"):
eval_phon_mode = self.tokenizer.set_phone_prob(prob=1.0)
with eval_phon_mode:
tokens = self.tokenizer.encode(text)
return torch.tensor(tokens).long().unsqueeze(0).to(self.device)
def _loader(self, cfg):
try:
_ = cfg.dataset.manifest_filepath
except omegaconf.errors.MissingMandatoryValue:
logging.warning("manifest_filepath was skipped. No dataset for this model.")
return None
dataset = instantiate(
cfg.dataset,
text_normalizer=self.normalizer,
text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
text_tokenizer=self.tokenizer,
)
return torch.utils.data.DataLoader( # noqa
dataset=dataset,
collate_fn=dataset.collate_fn,
**cfg.dataloader_params,
)
def setup_training_data(self, cfg):
self._train_dl = self._loader(cfg)
def setup_validation_data(self, cfg):
self._validation_dl = self._loader(cfg)
def setup_test_data(self, cfg):
"""Omitted."""
pass
@classmethod
def list_available_models(cls) -> 'List[PretrainedModelInfo]':
"""
This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
Returns:
List of available pre-trained models.
"""
list_of_models = []
model = PretrainedModelInfo(
pretrained_model_name="tts_en_lj_mixertts",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_mixertts/versions/1.6.0/files/tts_en_lj_mixertts.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.",
class_=cls, # noqa
)
list_of_models.append(model)
model = PretrainedModelInfo(
pretrained_model_name="tts_en_lj_mixerttsx",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_mixerttsx/versions/1.6.0/files/tts_en_lj_mixerttsx.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.",
class_=cls, # noqa
)
list_of_models.append(model)
return list_of_models
# Methods for model exportability
@property
def input_types(self):
return {
"text": NeuralType(('B', 'T_text'), TokenIndex()),
"lm_tokens": NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
}
@property
def output_types(self):
return {
"spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
}
def input_example(self, max_text_len=10, max_lm_tokens_len=10):
text = torch.randint(
low=0,
high=len(self.tokenizer.tokens),
size=(1, max_text_len),
device=self.device,
dtype=torch.long,
)
inputs = {'text': text}
if self.cond_on_lm_embeddings:
inputs['lm_tokens'] = torch.randint(
low=0,
high=self.lm_embeddings.weight.shape[0],
size=(1, max_lm_tokens_len),
device=self.device,
dtype=torch.long,
)
return (inputs,)
def forward_for_export(self, text, lm_tokens=None):
text_mask = (text != self.tokenizer_pad).unsqueeze(2)
spect = self.infer(text=text, text_mask=text_mask, lm_tokens=lm_tokens).transpose(1, 2)
return spect.to(torch.float)