Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional | |
| from nemo.collections.common.tokenizers.char_tokenizer import CharTokenizer | |
| __all__ = ['WordTokenizer'] | |
| class WordTokenizer(CharTokenizer): | |
| "Tokenizes at word boundary" | |
| def __init__( | |
| self, | |
| vocab_file: str, | |
| mask_token: Optional[str] = None, | |
| bos_token: Optional[str] = None, | |
| eos_token: Optional[str] = None, | |
| pad_token: Optional[str] = None, | |
| sep_token: Optional[str] = None, | |
| cls_token: Optional[str] = None, | |
| unk_token: Optional[str] = None, | |
| ): | |
| """ | |
| Args: | |
| vocab_file: path to file with vocabulary which consists | |
| of characters separated by \n | |
| mask_token: mask token | |
| bos_token: the beginning of sequence token | |
| eos_token: the end of sequence token. Usually equal to sep_token | |
| pad_token: token to use for padding | |
| sep_token: token used for separating sequences | |
| cls_token: class token. Usually equal to bos_token | |
| unk_token: token to use for unknown tokens | |
| """ | |
| super().__init__( | |
| vocab_file=vocab_file, | |
| mask_token=mask_token, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| pad_token=pad_token, | |
| unk_token=unk_token, | |
| sep_token=sep_token, | |
| cls_token=cls_token, | |
| ) | |
| def text_to_tokens(self, text): | |
| token_candidates = text.strip().split() | |
| tokens = [] | |
| for token in token_candidates: | |
| if token in self.vocab: | |
| tokens.append(token) | |
| else: | |
| tokens.append(self.unk_token) | |
| return tokens | |
| def ids_to_text(self, ids): | |
| ids_ = [id_ for id_ in ids if id_ not in self.special_tokens] | |
| return " ".join(self.ids_to_tokens(ids_)) | |