Spaces:
Runtime error
Runtime error
File size: 76,084 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring
import abc
import collections.abc
import functools
import inspect
import itertools
import operator
import queue
import types
from collections import defaultdict
from contextlib import contextmanager, nullcontext
from dataclasses import dataclass
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generic,
Iterable,
Iterator,
List,
Mapping,
Optional,
Protocol,
Sequence,
Tuple,
TypeVar,
Union,
cast,
runtime_checkable,
)
import torch
import torch.distributed
from lightning.pytorch.trainer.states import TrainerFn
from lightning.pytorch.utilities import move_data_to_device
try:
from megatron.core import parallel_state
from megatron.core.distributed import DistributedDataParallel as McoreDDP
from megatron.core.distributed import DistributedDataParallelConfig
from megatron.core.optimizer import OptimizerConfig
from megatron.core.transformer.moe.moe_utils import get_moe_layer_wise_logging_tracker
from megatron.core.transformer.transformer_config import TransformerConfig
HAVE_MEGATRON_CORE = True
except (ImportError, ModuleNotFoundError):
McoreDDP = object
DistributedDataParallelConfig = object
TransformerConfig = object
HAVE_MEGATRON_CORE = False
from torch import Tensor, nn
from typing_extensions import override
from nemo.utils.model_utils import check_lib_version
try:
from megatron.core.distributed.custom_fsdp import FullyShardedDataParallel
HAVE_CUSTOM_FSDP = True
except ImportError:
HAVE_CUSTOM_FSDP = False
try:
from megatron.core.distributed import FullyShardedDataParallel
HAVE_MEGATRON_FSDP = True
except ImportError:
HAVE_MEGATRON_FSDP = False
try:
from megatron.core.full_cuda_graph import FullCudaGraphWrapper
HAVE_FULL_CUDA_GRAPH = True
except ImportError:
_, mcore_import_msg = check_lib_version("megatron.core", "0.14.0", operator.ge)
HAVE_FULL_CUDA_GRAPH = False
DataT = TypeVar("DataT", Tensor, Dict[str, Tensor], Sequence[Tensor])
ModelT = TypeVar("ModelT", bound=nn.Module)
T = TypeVar('T')
STEP_OUTPUT = Optional[Union[Tensor, Mapping[str, Any]]]
if TYPE_CHECKING:
import lightning.pytorch as pl
@runtime_checkable
class PrecisionPluginProtocol(Protocol[DataT]):
def convert_input(self, data: DataT) -> DataT: ...
def convert_output(self, output: torch.Tensor) -> torch.Tensor: ...
def default_data_step(dataloader_iter: Iterator[DataT]) -> DataT:
"""
Moves the data to a device.
In this case we unpack the dataloader iterator. There may be a wrapper on the dataloader
iter from here: https://github.com/NVIDIA/NeMo/blob/main/nemo/lightning/fabric/strategies.py#L441.
This will not subset the data for your with context parallel so please override this function if you
want to use context parallel.
Examples:
If the dataloader_iter returns: [Tuple[<tensor>, <int>, <int>]] -> move to device
If the dataloader_iter returns: [<tensor>, <tensor>] -> move to device
Returns:
DataT: The data moved to the device.
"""
if parallel_state.get_context_parallel_world_size() > 1:
raise ValueError(
"Default data step is being used in a context parallel environment."
"Please define your own data step that appropriately slices the data for context parallel."
)
batch = next(dataloader_iter)
# If its wrapped in a tuple, unpack it.
if isinstance(batch, tuple) and len(batch) == 3:
batch = batch[0]
return move_data_to_device(batch, torch.cuda.current_device())
def default_forward_step(model: nn.Module, batch, *args, **kwargs) -> torch.Tensor:
return model(batch, *args, **kwargs)
def extract_ddp_funcs(ddp_config, pipeline):
no_sync_func, grad_sync_func = None, None
if getattr(ddp_config, "overlap_grad_reduce", False):
no_sync_func = [model_chunk.no_sync for model_chunk in pipeline]
no_sync_func = no_sync_func[0] if len(pipeline) == 1 else no_sync_func
if getattr(ddp_config, "align_grad_reduce", False):
grad_sync_func = [model_chunk.start_grad_sync for model_chunk in pipeline]
grad_sync_func = grad_sync_func[0] if len(pipeline) == 1 else grad_sync_func
return no_sync_func, grad_sync_func
class MegatronParallel(nn.ModuleList, Generic[ModelT]):
"""Implements distributed model parallelism that is based on Megatron-LM.
This supports various forms of parallelism:
- tensor-parallelism
- pipeline-parallelism
- virtual pipeline parallelism
- expert parallelism
- sequence parallelism
Attributes
----------
pipeline (Union[nn.Module, Iterable[nn.Module]]): The sequence of modules that
constitute the pipeline.
precision_plugin (Optional[PrecisionPluginProtocol]): An optional plugin for
managing precision-specific operations.
callbacks (CallbackConnector): A connector for managing and invoking callbacks.
data_step (Callable[[Iterator[DataT]], DataT]): A function that takes an iterator
over the data and returns the next batch.
forward_step (Callable[[nn.Module, DataT], Tensor]): A function that defines the
forward pass of a model.
loss_reduction (Optional[Callable[[nn.Module], MegatronLossReduction]]): An optional
function that defines how the loss is reduced.
vp_size (Optional[int]): Virtual pipeline parallel size.
ddp_config (Optional[DistributedDataParallelConfig]): An instance of Megatron core's
DistributedDataParallelConfig which controls the Megatron DDP configuration.
fsdp (Optional[str]): Whether model should run Torch FSDP2 instead of DDP, select from
["megatron", "torch"]. Defaults to None.
cpu (bool): Whether model should reside on CPU.
convert_module_fn (Optional[Callable[[ModelT], nn.Module]]): An optional function to
apply to the model parameters after initialization.
Examples
--------
>>> from torch import nn
>>> from megatron_ext.megatron_parallel import MegatronParallel
>>> model = nn.Sequential(nn.Linear(10, 10), nn.ReLU(), nn.Linear(10, 5))
>>> megatron_model = MegatronParallel(model)
>>> print(megatron_model)
MegatronParallel(
(0): Linear(in_features=10, out_features=10, bias=True)
(1): ReLU()
(2): Linear(in_features=10, out_features=5, bias=True)
)
References
----------
Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019).
Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM.
arXiv preprint arXiv:1909.08053.
"""
def __init__(
self,
pipeline: Union[ModelT, Iterable[ModelT]],
precision_plugin: Optional[PrecisionPluginProtocol] = None,
callbacks: Optional["CallbackConnector"] = None,
data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None,
forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None,
loss_reduction: Optional[Callable[[ModelT], "MegatronLossReduction"]] = None,
vp_size: Optional[int] = None,
ddp_config: Optional[DistributedDataParallelConfig] = None,
fsdp: Optional[str] = None,
cpu: bool = False,
convert_module_fn: Optional[Callable[[ModelT], nn.Module]] = None,
) -> None:
from megatron.core import parallel_state
_pipeline: List[nn.Module]
if isinstance(pipeline, nn.ModuleList):
_pipeline = list(pipeline)
elif isinstance(pipeline, nn.Module):
_pipeline = [pipeline]
else:
_pipeline = pipeline
if vp_size is not None:
if len(_pipeline) == 1 and parallel_state.get_pipeline_model_parallel_world_size() > 1:
from nemo.lightning import io
for i in range(1, vp_size):
_model = io.reinit(_pipeline[0])
if hasattr(_model, "configure_model"):
_model.configure_model(vp_stage=i)
_pipeline.append(_model)
super().__init__(_pipeline)
self.precision_plugin = precision_plugin
self._cpu = cpu
self.callbacks = callbacks or CallbackConnector()
self.data_step = data_step or default_data_step
self.forward_step = forward_step or default_forward_step
self.loss_reduction: MegatronLossReduction = loss_reduction
self.ddp_config = ddp_config
self.fsdp = fsdp
self.convert_module_fn = convert_module_fn
self.vp_size = vp_size
def forward(
self,
data: Union[DataT, Iterator[DataT], List[Iterator[DataT]]],
forward_only: bool = True,
data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None,
forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None,
loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None,
seq_length: Optional[int] = None,
micro_batch_size: Optional[int] = None,
num_microbatches: Optional[int] = None,
step_i: Optional[int] = None,
wrap_forward_step: bool = True,
) -> torch.Tensor:
"""The method performs the forward pass of the model.
This method is responsible for executing the forward pass of the model. If `forward_only` is set to False,
During the execution, it invokes various callbacks at different stages of the operation.
For more info about that see [CallbackConnector].
Args:
data (Union[DataT, Iterator[DataT], List[Iterator[DataT]]]): The input data for the model.
forward_only (bool, optional): If True, only perform the forward pass. Defaults to True.
data_step (Optional[Callable[[Iterator[DataT]], DataT]], optional): Function to process the data.
Defaults to None.
forward_step (Optional[Callable[[nn.Module, DataT], Tensor]], optional): Function to perform the
forward pass. Defaults to None.
loss_reduction (Optional[MegatronLossReduction[DataT, Any]], optional): Function to reduce the
loss. Defaults to None.
seq_length (Optional[int], optional): Sequence length for the model. Defaults to None.
micro_batch_size (Optional[int], optional): Size of the micro batch. Defaults to None.
num_microbatches (Optional[int], optional): Number of microbatches. Defaults to None.
wrap_forward_step (bool, optional): If True, wrap the forward step function. Defaults to True.
Returns
-------
torch.Tensor: The output tensor from the forward pass.
"""
_forward_step = forward_step or self.forward_step
_loss_reduction = loss_reduction or self.loss_reduction
_forward_context = {}
if wrap_forward_step:
_data_step = data_step or self.data_step
forward_step_func = self.wrapped_forward_step(
forward_step=_forward_step,
data_step=_data_step,
loss_reduction=_loss_reduction,
context=_forward_context,
)
else:
forward_step_func = _forward_step
step = MegatronStep.infer(
self,
data,
forward_step_func,
forward_only=forward_only,
micro_batch_size=micro_batch_size,
num_microbatches=num_microbatches,
seq_length=seq_length,
step_i=step_i,
)
_forward_context["step"] = step
step = self.callbacks.transform_event("on_megatron_step_start", step)
self.callbacks.event("on_megatron_microbatches_start", step=step)
microbatch_outputs = step()
self.callbacks.event("on_megatron_microbatches_end", step=step, microbatch_outputs=microbatch_outputs)
if microbatch_outputs:
self.callbacks.event(
"on_megatron_reduce_microbatches_start", step=step, microbatch_outputs=microbatch_outputs
)
if isinstance(_loss_reduction, _ModuleStepFunction):
_loss_reduction = _loss_reduction(self.module)
reduced = _loss_reduction.reduce(microbatch_outputs)
self.callbacks.event(
"on_megatron_reduce_microbatches_end",
step=step,
loss_reduction=_loss_reduction,
microbatch_outputs=microbatch_outputs,
reduced=reduced,
)
else:
# we're not on the last pipeline stage so no losses
reduced = torch.tensor(0.0, device=torch.cuda.current_device())
self.callbacks.event("on_megatron_step_end", step=step, microbatch_outputs=microbatch_outputs, reduced=reduced)
return reduced
def training_step(
self,
data: DataT,
data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None,
forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None,
loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None,
seq_length: Optional[int] = None,
micro_batch_size: Optional[int] = None,
num_microbatches: Optional[int] = None,
**kwargs,
) -> STEP_OUTPUT:
return self._step(
"training",
data,
data_step=data_step,
forward_step=forward_step,
loss_reduction=loss_reduction,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
num_microbatches=num_microbatches,
forward_only=False,
**kwargs,
)
def validation_step(
self,
data: DataT,
data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None,
forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None,
loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None,
seq_length: Optional[int] = None,
micro_batch_size: Optional[int] = None,
num_microbatches: Optional[int] = None,
step_i: Optional[int] = None,
**kwargs,
) -> STEP_OUTPUT:
return self._step(
"validation",
data,
data_step=data_step,
forward_step=forward_step,
loss_reduction=loss_reduction,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
num_microbatches=num_microbatches,
step_i=step_i,
forward_only=True,
**kwargs,
)
def test_step(
self,
data: DataT,
data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None,
forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None,
loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None,
seq_length: Optional[int] = None,
micro_batch_size: Optional[int] = None,
num_microbatches: Optional[int] = None,
step_i: Optional[int] = None,
**kwargs,
) -> STEP_OUTPUT:
return self._step(
"test",
data,
data_step=data_step,
forward_step=forward_step,
loss_reduction=loss_reduction,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
num_microbatches=num_microbatches,
step_i=step_i,
forward_only=True,
**kwargs,
)
def predict_step(
self,
data: DataT,
data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None,
forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None,
loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None,
seq_length: Optional[int] = None,
micro_batch_size: Optional[int] = None,
num_microbatches: Optional[int] = None,
step_i: Optional[int] = None,
**kwargs,
) -> STEP_OUTPUT:
return self._step(
"predict",
data,
data_step=data_step,
forward_step=forward_step,
loss_reduction=loss_reduction,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
num_microbatches=num_microbatches,
step_i=step_i,
forward_only=True,
**kwargs,
)
def _step(
self,
step_type: str,
data: DataT,
data_step: Optional[Callable[[Iterator[DataT]], DataT]] = None,
forward_step: Optional[Callable[[ModelT, DataT], Tensor]] = None,
loss_reduction: Optional["MegatronLossReduction[DataT, Any]"] = None,
seq_length: Optional[int] = None,
micro_batch_size: Optional[int] = None,
num_microbatches: Optional[int] = None,
forward_only: bool = True,
step_i: Optional[int] = None,
**kwargs,
) -> STEP_OUTPUT:
if not hasattr(self.module, f"{step_type}_step"):
raise AttributeError(f"self.module must have a `{step_type}_step` method")
_data_step = data_step or _ModuleStepFunction.from_data_step(self.module, step_type)
_forward_step = forward_step or _ModuleStepFunction.from_forward_step(self.module, step_type)
_loss_reduction = loss_reduction or _ModuleStepFunction.from_loss_reduction(self.module, step_type)
return self.forward(
data=data,
data_step=_data_step,
forward_step=_forward_step,
loss_reduction=_loss_reduction,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
num_microbatches=num_microbatches,
forward_only=forward_only,
step_i=step_i,
**kwargs,
)
def wrapped_forward_step(
self, forward_step, loss_reduction, data_step, context
) -> Callable[[nn.Module, DataT], Tuple[torch.Tensor, "MegatronCallbackProtocol"]]:
"""The method wraps the forward step function and returns a callable.
The output is a forward_step function in the form of:
https://github.com/NVIDIA/Megatron-LM/blob/main/pretrain_gpt.py#L129
Args:
forward_step (Callable): The forward step function to be wrapped.
loss_reduction (Callable): The loss reduction function.
context (Dict): The context dictionary.
data_step (Callable): The data step function.
Returns
-------
Callable: The wrapped forward step function.
"""
from megatron.core import parallel_state
@functools.wraps(forward_step)
def wrapped_forward_step_func(dataloader_iter, model):
if isinstance(data_step, _ModuleStepFunction):
_data_step = data_step(model)
else:
_data_step = data_step
batch = _data_step(dataloader_iter)
step = context["step"]
if isinstance(loss_reduction, _ModuleStepFunction):
forward_callback = loss_reduction(model)
else:
forward_callback = loss_reduction
if isinstance(forward_step, _ModuleStepFunction):
_forward_step = forward_step(model)
else:
_forward_step = forward_step
self.callbacks.event(
"on_megatron_microbatch_start",
step=step,
batch=batch,
forward_callback=forward_callback,
)
if self.precision_plugin and parallel_state.is_pipeline_first_stage(
ignore_virtual=False, vp_stage=getattr(model.module, 'vp_stage', None)
):
batch = self.precision_plugin.convert_input(batch)
output_tensor = _forward_step(model, batch)
# callback
self._setup_module(
forward_callback,
batch=batch,
model=self,
forward_module=model,
tensor=output_tensor,
)
if self.precision_plugin and parallel_state.is_pipeline_last_stage(
ignore_virtual=False, vp_stage=getattr(model.module, 'vp_stage', None)
):
output_tensor = self.precision_plugin.convert_output(output_tensor)
self.callbacks.event(
"on_megatron_microbatch_end",
step=step,
batch=batch,
output=output_tensor,
forward_callback=forward_callback,
)
return output_tensor, forward_callback
return wrapped_forward_step_func
def init_model_parallel(self):
from megatron.core import parallel_state
from megatron.core.tensor_parallel.layers import set_defaults_if_not_set_tensor_model_parallel_attributes
for model_module in self:
if not self._cpu and ((not HAVE_MEGATRON_FSDP and not HAVE_CUSTOM_FSDP) or self.fsdp != "megatron"):
# If Megatron custom FSDP is enabled, we don't need to move the model to GPU here to avoid GPU OOM.
model_module.cuda(torch.cuda.current_device())
for param in model_module.parameters():
set_defaults_if_not_set_tensor_model_parallel_attributes(param)
if hasattr(model_module, "configure_model"):
if not hasattr(model_module, "set_input_tensor"):
if hasattr(model_module.module, "set_input_tensor"):
model_module.set_input_tensor = model_module.module.set_input_tensor
else:
# TODO: What to do here?
pass
# Print number of parameters.
if parallel_state.model_parallel_is_initialized() and parallel_state.get_data_parallel_rank() == 0:
from nemo.utils import logging
num_params = _calc_number_of_params(list(self))
num_trainable_params = _calc_number_of_trainable_params(list(self))
msg = (
f" > number of parameters on (tensor, pipeline) model parallel rank "
f"({parallel_state.get_tensor_model_parallel_rank()} ,"
f"{parallel_state.get_pipeline_model_parallel_rank()}): "
f"{num_params}"
)
logging.info(msg)
if num_params != num_trainable_params:
logging.info(
f" > number of trainable parameters: {num_trainable_params} "
f"({num_trainable_params / num_params:.2%} of total)"
)
if self.convert_module_fn:
self.apply_convert_module_fn()
# Skip init_ddp for inference i.e testing as it can lead to OOM.
try:
if not self.trainer.state.fn == TrainerFn.TESTING:
# DDP initialization is required to be on side-stream to for full iteration CUDA graph.
with torch.cuda.stream(torch.cuda.Stream()):
self.init_ddp()
except RuntimeError as e:
# Don't fail if trainer is not attached, re-raise any other RuntimeError
if "is not attached to a `Trainer`" not in str(e):
raise e
def apply_convert_module_fn(self):
for i in range(len(self)):
self[i] = self.convert_module_fn(self[i])
def init_ddp(self):
if not isinstance(self.ddp_config, DistributedDataParallelConfig):
return
from megatron.core import parallel_state
from megatron.core.transformer.module import Float16Module
from nemo.utils.model_utils import unwrap_model
for model_chunk_idx, model_chunk in enumerate(self):
module = model_chunk.module
# Mcore DistributedDataParallel has to be called with grad. Normally this call is redundant, but for
# PEFT with num_sanity_val_steps > 0 this is necessary.
init_ddp_context = nullcontext if all(x.requires_grad for x in module.parameters()) else torch.enable_grad
# Turn off bucketing for model_chunk 2 onwards, since communication for these
# model chunks is overlapped with compute anyway, or if using VP and overlapping
# data parallel param gather with optimizer
overlap_param_gather_with_optimizer_step = False
if hasattr(self, "optim") and isinstance(self.optim.config, OptimizerConfig):
overlap_param_gather_with_optimizer_step = self.optim.config.overlap_param_gather_with_optimizer_step
disable_bucketing = (model_chunk_idx > 0) or overlap_param_gather_with_optimizer_step
with init_ddp_context():
# Avoid rewrapping the module if it's already wrapped with FSDP
unwrapped_module = unwrap_model(module, Float16Module)
if (
(HAVE_MEGATRON_FSDP or HAVE_CUSTOM_FSDP)
and self.fsdp == "megatron"
and not isinstance(unwrapped_module, FullyShardedDataParallel)
):
from nemo.utils import logging
if not getattr(module.config, "use_megatron_fsdp", False):
setattr(module.config, "use_megatron_fsdp", True)
logging.warning("Setting module.config.use_megatron_fsdp to True for MCore FSDP.")
if not getattr(module.config, "use_custom_fsdp", False):
setattr(module.config, "use_custom_fsdp", True)
logging.warning("Setting module.config.use_custom_fsdp to True for MCore FSDP.")
if getattr(module.config, "gradient_accumulation_fusion", True):
setattr(module.config, "gradient_accumulation_fusion", False)
logging.warning("Setting module.config.gradient_accumulation_fusion to False for MCore FSDP.")
if HAVE_MEGATRON_FSDP:
assert module.config.use_megatron_fsdp, "MCore FSDP is not enabled in module.config."
assert self.ddp_config.use_megatron_fsdp, "MCore FSDP is not enabled in ddp_config."
elif HAVE_CUSTOM_FSDP:
assert module.config.use_custom_fsdp, "MCore FSDP is not enabled in module.config."
assert self.ddp_config.use_custom_fsdp, "MCore FSDP is not enabled in ddp_config."
logging.warning(
"Deprecation Notice: `use_custom_fsdp` will be deprecated in M-Core 0.14. "
"Please use `use_megatron_fsdp` instead."
)
dist_module = FullyShardedDataParallel(
module.config,
self.ddp_config,
module,
disable_bucketing=disable_bucketing,
)
if HAVE_MEGATRON_FSDP:
dist_module.buffers = [dist_module.param_and_grad_buffer]
dist_module.config = module.config
dist_module.sharded_state_dict = lambda *args, **kwargs: dist_module.state_dict()
elif not isinstance(unwrapped_module, DDP):
dist_module = DDP(
module.config,
self.ddp_config,
module,
data_parallel_group=parallel_state.get_data_parallel_group(with_context_parallel=True),
expert_data_parallel_group=parallel_state.get_data_modulo_expert_parallel_group(),
disable_bucketing=disable_bucketing,
)
else:
dist_module = unwrapped_module
model_chunk.module = dist_module
model_chunk.buffers = (
dist_module.buffers
) # We need to do this explicitly since this is a attr pytorch uses
# save a reference to the original getattr function
# so we can restore the class' getattr during teardown
original_getattr = types.FunctionType(
model_chunk.__getattr__.__code__,
model_chunk.__getattr__.__globals__,
model_chunk.__getattr__.__name__,
model_chunk.__getattr__.__defaults__,
model_chunk.__getattr__.__closure__,
)
model_chunk.original_getattr = original_getattr
model_chunk.original_getattr.__dict__.update(model_chunk.__getattr__.__dict__)
model_chunk.__class__.__getattr__ = getattr_proxy # type: ignore
# param_sync_func is set in nemo.lightning.pytorch.optim.megatron
no_sync_func, grad_sync_func = extract_ddp_funcs(self.ddp_config, self)
for module in self:
module.config.no_sync_func = no_sync_func
module.config.grad_sync_func = grad_sync_func
def teardown_ddp(self):
for model_chunk in self:
if hasattr(model_chunk, "original_getattr"):
model_chunk.__class__.__getattr__ = model_chunk.original_getattr # type: ignore
def _setup_module(self, function, **kwargs) -> None:
if hasattr(function, "setup"):
setup_args = inspect.getfullargspec(function.setup).args
setup_kwargs = {k: v for k, v in kwargs.items() if k in setup_args}
function.setup(**setup_kwargs)
def _call_module(self, function, *args, **kwargs) -> torch.Tensor:
self._setup_module(function, **kwargs)
call_args = inspect.getfullargspec(function).args
call_kwargs = {k: v for k, v in kwargs.items() if k in call_args}
output_tensor = function(*args, **call_kwargs)
return output_tensor
def sharded_state_dict(self, prefix: str = "", metadata: Optional[dict] = None) -> Dict[str, Any]:
"""
Creates the sharded state dict which is used by dist_checkpoint to save the sharded tensors to disk.
When given the sharded_stated_dict, dist_checkpoint.load will load the tensors corresponding to
self.state_dict().
The sharded tensor mapping is defined in the GPTModel class from mcore.
"""
from nemo.utils import logging
if metadata is None:
metadata = self.trainer.strategy.sharded_state_dict_metadata
logging.debug(
f'No sharded_state_dict metadata passed for the model,'
f' using metadata for checkpoint save: {metadata}'
)
else:
logging.debug(f'Using passed sharded_state_dict metadata in the model: {metadata}')
sharded_state_dict = {}
for index, module in enumerate(self):
if self.vp_size is not None:
module_sharded_state_dict = self._module_sharded_state_dict(module, metadata=metadata)
sharded_state_dict[f"model_{index}"] = module_sharded_state_dict
else:
module_sharded_state_dict = self._module_sharded_state_dict(module, metadata=metadata)
sharded_state_dict.update(module_sharded_state_dict)
return sharded_state_dict
def _module_sharded_state_dict(self, module, *args, **kwargs) -> Dict[str, Any]:
if hasattr(module, "sharded_state_dict"):
return module.sharded_state_dict(*args, **kwargs)
elif hasattr(module, "configure_model"):
prefix = "".join([kwargs.pop("prefix", ""), "module."])
return self._module_sharded_state_dict(module.module, *args, prefix=prefix, **kwargs)
raise ValueError("Could not find sharded state dict")
def enable_forward_pre_hook(self):
for model in self:
model_chunk = model.module
assert isinstance(model_chunk, DDP) or isinstance(model_chunk, FullyShardedDataParallel)
model_chunk.enable_forward_pre_hook()
def disable_forward_pre_hook(self):
for model in self:
model_chunk = model.module
assert isinstance(model_chunk, DDP) or isinstance(model_chunk, FullyShardedDataParallel)
model_chunk.disable_forward_pre_hook()
def force_param_sync(self):
for model in self:
model_chunk = model.module
assert isinstance(model_chunk, DDP) or isinstance(model_chunk, FullyShardedDataParallel)
model_chunk.start_param_sync(force_sync=True)
@property
def pipeline(self) -> Union[ModelT, List[ModelT]]:
if len(self) == 1:
return self[0]
else:
return list(self)
@property
def module(self) -> ModelT:
return self[0]
@override
def __getattr__(self, item: Any) -> Any:
try:
# First, try to get the attribute from the superclass (nn.ModuleList)
return super().__getattr__(item)
except AttributeError:
# If not found in superclass, check if we have any modules
if len(self) == 0:
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{item}' and contains no modules"
)
# Try to get it from the first module
try:
return getattr(self._modules[self._get_abs_string_index(0)], item)
except AttributeError:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{item}'")
class _ModuleStepFunction:
"""
This class acts as a bridge between Megatron core's lower-level functional API and PTL's object-oriented API,
making it possible to use PTL-compatible functions in Megatron core.
"""
def __init__(self, name: str, is_property: bool = False, includes_self: bool = False):
self.name = name
self.is_property = is_property
self.includes_self = includes_self
@classmethod
def from_data_step(cls, module: "pl.LightningModule", step_type: str) -> Optional["_ModuleStepFunction"]:
for fn_name in [f"{step_type}_data_step", "data_step"]:
if hasattr(module, fn_name):
return _ModuleStepFunction(fn_name)
return None
@classmethod
def from_forward_step(cls, module: "pl.LightningModule", step_type: str) -> Optional["_ModuleStepFunction"]:
from megatron.core import parallel_state
if parallel_state.is_pipeline_last_stage(ignore_virtual=False, vp_stage=getattr(module, 'vp_stage', None)):
if not hasattr(module, f"{step_type}_step"):
raise ValueError(f"LightningModule does not have {step_type}_step method")
return _ModuleStepFunction(f"{step_type}_step", includes_self=True)
for fn_name in [f"{step_type}_forward_step", "forward_step"]:
if hasattr(module, fn_name):
return _ModuleStepFunction(fn_name, includes_self=True)
return None
@classmethod
def from_loss_reduction(cls, module: "pl.LightningModule", step_type: str) -> Optional["_ModuleStepFunction"]:
for fn_name in [f"{step_type}_loss_reduction", "loss_reduction"]:
if hasattr(module, fn_name):
return _ModuleStepFunction(fn_name, is_property=True)
return None
def __call__(self, module: nn.Module):
attr = getattr(module, self.name)
if self.is_property:
if isinstance(getattr(type(module), self.name), property):
return attr
else:
return attr()
if self.includes_self:
def wrapped(self, *args):
return attr(*args)
return wrapped
return attr
def getattr_proxy(self, item: Any) -> Any:
try:
return super(self.__class__, self).__getattr__(item)
except AttributeError as e:
if item == 'module': ## this is a hacky WAR and may cause misleading error messages
raise e
try:
return getattr(self.module, item)
except AttributeError:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{item}'")
class DDP(McoreDDP):
def __init__(
self,
config: TransformerConfig,
ddp_config: DistributedDataParallelConfig,
module: torch.nn.Module,
disable_bucketing: bool = False,
**kwargs,
):
init_parameters = inspect.signature(McoreDDP.__init__).parameters
# Updates to the McoreDDP class have removed some parameters, so we need to
# filter out any kwargs that are not part of the updated signature, if a new
# version of mcore is being used.
filtered_kwargs = {k: v for k, v in kwargs.items() if k in init_parameters}
super().__init__(
config=config,
ddp_config=ddp_config,
module=module,
disable_bucketing=disable_bucketing,
**filtered_kwargs,
)
def state_dict(self, prefix='', keep_vars=False, **kwargs):
self.module.state_dict(prefix=prefix, keep_vars=keep_vars, **kwargs)
def __getattr__(self, item: Any) -> Any:
return getattr_proxy(self, item)
class CallbackConnector:
"""
A connector for managing and invoking callbacks.
The CallbackConnector class in the MegatronParallel module
is used to manage and invoke callbacks during the execution of the model.
Callbacks are functions that are called at specific stages of the model
execution, allowing you to hook into the model's operation for logging, debugging, or other purposes.
The CallbackMethods class defines the names of the callback methods that can be used.
These methods are:
- `on_megatron_step_start`
- `on_megatron_microbatch_start`
- `on_megatron_microbatch_callback`
- `on_megatron_microbatch_end`
- `on_megatron_reduce_microbatches_start`
- `on_megatron_reduce_microbatches_end`
- `on_megatron_log_step_end`
- `on_megatron_step_end`
Each of these methods corresponds to a specific stage in the model's operation.
You can define these methods in your callback functions to perform specific actions at these stages.
There is no need for the class to be a subclass of a specific parent class.
As long as the class contains the methods outlined above, it can be used as a callback.
"""
def __init__(self, callbacks=None) -> None:
self.callbacks = defaultdict(list)
if callbacks:
self.add(*callbacks)
def add(self, *callbacks) -> "CallbackConnector":
"""
Adds callback functions to the connector.
Parameters
----------
*callbacks : CallbackT
One or more callback functions to add.
Returns
-------
CallbackConnector
The CallbackConnector instance to allow method chaining.
"""
_pl_callback = None
try:
import lightning.pytorch as pl
_pl_callback = pl.Callback
except ImportError:
pass
megatron_methods = {m for m in dir(CallbackMethods) if m.startswith("on") and not hasattr(_pl_callback, m)}
for callback in callbacks:
if isinstance(callback, CallbackConnector):
# Handle CallbackConnector instance: merge its callbacks
for event_name, event_callbacks in callback.callbacks.items():
self.callbacks[event_name].extend(event_callbacks)
else:
for method in megatron_methods:
if hasattr(callback, method) and callable(getattr(callback, method)):
self.callbacks[method].append(callback)
return self
def event(self, name: str, *args, **kwargs) -> None:
"""
Triggers an event and calls all associated callbacks.
Parameters
----------
name : str
The name of the event to trigger.
*args : Any
Positional arguments to pass to the callbacks.
**kwargs : Any
Keyword arguments to pass to the callbacks.
"""
for callback in self.callbacks.get(name, []):
callback_method = getattr(callback, name, None)
if callable(callback_method):
# Inspect the callback method to determine accepted arguments
sig = inspect.signature(callback_method)
params = sig.parameters.values()
# Check for *args and **kwargs in the callback method
accepts_var_args = any(p.kind == p.VAR_POSITIONAL for p in params)
accepts_var_kwargs = any(p.kind == p.VAR_KEYWORD for p in params)
if accepts_var_args and accepts_var_kwargs:
# If both *args and **kwargs are accepted, pass them directly
callback_method(*args, **kwargs)
elif accepts_var_args:
# If only *args is accepted, filter kwargs
filtered_kwargs = {k: v for k, v in kwargs.items() if k in sig.parameters}
callback_method(*args, **filtered_kwargs)
elif accepts_var_kwargs:
# If only **kwargs is accepted, filter args
filtered_args = [
arg
for arg, param in zip(args, params)
if param.kind in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD)
]
callback_method(*filtered_args, **kwargs)
else:
# If neither is accepted, filter both args and kwargs
filtered_args = [
arg
for arg, param in zip(args, params)
if param.kind in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD)
]
filtered_kwargs = {k: v for k, v in kwargs.items() if k in sig.parameters}
callback_method(*filtered_args, **filtered_kwargs)
def transform_event(self, name: str, obj: T, **kwargs) -> T:
"""
Triggers an event that allows callbacks to transform and return an object.
This method applies a series of potential transformations to the input object
by calling registered callbacks. Each callback has the opportunity to modify
and return a new version of the object.
Parameters
----------
name : str
The name of the event to trigger.
obj : T
The object to be potentially transformed by callbacks.
**kwargs : Any
Additional keyword arguments to pass to the callbacks.
Returns
-------
T
The potentially transformed object.
"""
for callback in self.callbacks.get(name, []):
callback_method = getattr(callback, name, None)
if callable(callback_method):
result = callback_method(obj, **kwargs)
# Update obj if the callback returned a value of the same type
if result is not None and isinstance(result, type(obj)):
obj = result
return obj
def __add__(self, other) -> "CallbackConnector":
"""
Adds another CallbackConnector's callbacks to this one.
Parameters
----------
other : CallbackConnector
Another CallbackConnector instance to add.
Returns
-------
CallbackConnector
A new CallbackConnector instance with combined callbacks.
Raises
------
ValueError
If `other` is not an instance of CallbackConnector.
"""
if not isinstance(other, CallbackConnector):
raise ValueError("Can only add CallbackConnector instances")
new_connector = CallbackConnector()
new_connector.callbacks = defaultdict(list, {**self.callbacks, **other.callbacks})
return new_connector
def __iadd__(self, other) -> "CallbackConnector":
"""
In-place addition of another CallbackConnector's callbacks.
Parameters
----------
other : CallbackConnector
Another CallbackConnector instance to add.
Returns
-------
CallbackConnector
The same CallbackConnector instance with combined callbacks.
Raises
------
ValueError
If `other` is not an instance of CallbackConnector.
"""
if not isinstance(other, CallbackConnector):
raise ValueError("Can only add CallbackConnector instances")
for event_name, event_callbacks in other.callbacks.items():
self.callbacks[event_name].extend(event_callbacks)
return self
def __contains__(self, callback_object) -> bool:
"""
Check if the given callback object is registered in the CallbackConnector.
If the object has none of the methods of CallbackMethods, it returns True.
If it has at least one of the methods, it checks if it's inside the CallbackConnector object.
Args:
callback_object: The object to check for callback methods.
Returns
-------
bool: True if the callback object is registered, False otherwise.
"""
# Get all method names from CallbackMethods class
callback_methods = [
func
for func in dir(CallbackMethods)
if callable(getattr(CallbackMethods, func)) and not func.startswith("__")
]
# Check if the object has any method that's in CallbackMethods
has_any_callback_method = any(hasattr(callback_object, method) for method in callback_methods)
# If the object has none of the methods, it's not a callback
if not has_any_callback_method:
return True
# If it has at least one of the methods, check if it's registered in the CallbackConnector
for event_callbacks in self.callbacks.values():
if callback_object in event_callbacks:
return True
return False
@dataclass
class MegatronStep(Generic[ModelT, DataT]):
"""
Represents a single step in the Megatron model's training or inference process.
This class encapsulates all the necessary information and logic for executing
a single step (forward pass, and optionally backward pass) in the Megatron model.
It handles data preparation, model execution, and provides utilities for inferring
batch sizes and sequence lengths.
Attributes:
pipeline (MegatronParallel[ModelT]): The Megatron parallel model pipeline.
data (Union[DataT, Iterator[DataT], List[Iterator[DataT]]]): Input data for the step.
forward_step_func (Callable): Function to perform the forward step.
forward_only (bool): If True, only perform forward pass (no backward pass).
micro_batch_size (Optional[int]): Size of each micro-batch.
seq_length (Optional[int]): Sequence length for the current step.
num_microbatches (Optional[int]): Number of micro-batches in this step.
decoder_seq_length (Optional[int]): Sequence length of decoder (used only in
encoder-decoder style models) for the current step.
Type Parameters:
ModelT: The type of the model being used.
DataT: The type of the input data.
"""
pipeline: MegatronParallel[ModelT]
data: Union[DataT, Iterator[DataT], List[Iterator[DataT]]]
forward_step_func: Callable
forward_only: bool
micro_batch_size: Optional[int] = None
seq_length: Optional[int] = None
num_microbatches: Optional[int] = None
step_i: Optional[int] = None
decoder_seq_length: Optional[int] = None
@classmethod
def infer(
cls,
pipeline: MegatronParallel[ModelT],
data: DataT,
forward_step_func: Callable,
forward_only: bool,
micro_batch_size: Optional[int] = None,
seq_length: Optional[int] = None,
num_microbatches: Optional[int] = None,
step_i: Optional[int] = None,
) -> "MegatronStep[ModelT, DataT]":
"""
Creates a MegatronStep instance, inferring missing parameters if possible.
This method attempts to infer the micro_batch_size, seq_length, and num_microbatches
from the provided data if they are not explicitly specified.
Args:
pipeline (MegatronParallel[ModelT]): The Megatron parallel model pipeline.
data (DataT): Input data for the step.
forward_step_func (Callable): Function to perform the forward step.
forward_only (bool): If True, only perform forward pass (no backward pass).
micro_batch_size (Optional[int]): Size of each micro-batch.
seq_length (Optional[int]): Sequence length for the current step.
num_microbatches (Optional[int]): Number of micro-batches in this step.
step_i (Optional[int]): Step index for the current step.
Returns:
MegatronStep[ModelT, DataT]: An instance of MegatronStep with inferred parameters.
"""
if step_i is None and pipeline.trainer:
step_i = pipeline.trainer.global_step
return cls(
pipeline=pipeline,
data=data,
forward_step_func=forward_step_func,
forward_only=forward_only,
micro_batch_size=micro_batch_size or cls.infer_micro_batch_size(data),
seq_length=seq_length or cls.infer_seq_length(data),
num_microbatches=num_microbatches or cls.infer_num_microbatches(data),
step_i=step_i,
)
def __call__(self) -> List[Any]:
"""
Executes the Megatron step.
This method performs the forward (and optionally backward) pass using the
configured forward_backward_func. It ensures all necessary parameters are set
before execution.
Returns:
List[Any]: The output of the forward_backward_func, typically containing
loss values and other relevant information.
Raises:
ValueError: If any of num_microbatches, seq_length, or micro_batch_size is not set.
"""
if self.num_microbatches is None:
raise ValueError("num_microbatches is not set")
if self.seq_length is None:
raise ValueError("seq_length is not set")
if self.micro_batch_size is None:
raise ValueError("micro_batch_size is not set")
data_iterator, seq_length = self.get_data_iterator_and_seq_length()
seq_length = seq_length or self.seq_length
return self.forward_backward_func(
forward_step_func=self.forward_step_func,
data_iterator=data_iterator,
model=self.model,
num_microbatches=self.num_microbatches,
seq_length=seq_length,
micro_batch_size=self.micro_batch_size,
forward_only=self.forward_only,
decoder_seq_length=self.decoder_seq_length,
adjust_tensor_shapes_fn=self.adjust_tensor_shapes_fn,
)
def to_data_iterator_list(
self, data: Union[DataT, Iterator[DataT], List[Iterator[DataT]]]
) -> List[Iterator[DataT]]:
"""
Converts the provided data into a list of iterators.
This method is used to convert the input data into a list of iterators that can be used
for data parallelism in the Megatron model. The input data can be a single data item,
an iterator, or a list of iterators.
Args:
data (Union[DataT, Iterator[DataT], List[Iterator[DataT]]]): The input data to be
converted into a list of iterators.
Returns:
List[Iterator[DataT]]: A list of iterators created from the input data.
"""
if isinstance(data, Iterator):
return _make_data_iterator_list(self.model, data)
elif isinstance(data, list) and all(isinstance(item, Iterator) for item in data):
# If data is already a list of iterators, return it as is
return cast(List[Iterator[DataT]], data)
# For a single data item or any other type, wrap it in an iterator and return as a list
return cast(List[Iterator[DataT]], [iter([data])])
@classmethod
def infer_micro_batch_size(cls, data: DataT) -> Optional[int]:
"""
Infers the micro-batch size from the input data.
This method attempts to determine the micro-batch size by examining the first
dimension of the input data. It handles various data types including Tensors,
dictionaries, lists, and tuples.
Args:
data (DataT): The input data from which to infer the micro-batch size.
Returns:
Optional[int]: The inferred micro-batch size, or None if it cannot be determined.
"""
if isinstance(data, Tensor):
return data.size(0)
elif isinstance(data, dict):
return cls.infer_micro_batch_size(next(iter(data.values())))
elif isinstance(data, (list, tuple)) and len(data) > 0:
_tensor: Tensor = data[0]
return cls.infer_micro_batch_size(_tensor)
return None
@classmethod
def infer_seq_length(cls, data: DataT) -> Optional[int]:
"""
Infers the sequence length from the input data.
This method attempts to determine the sequence length by examining the second
dimension of the input data. It handles various data types including Tensors,
dictionaries, lists, and tuples.
Args:
data (DataT): The input data from which to infer the sequence length.
Returns:
Optional[int]: The inferred sequence length, or None if it cannot be determined.
"""
if isinstance(data, Tensor):
# TODO: Check if at least 2 dims
return data.size(1)
elif isinstance(data, dict):
return cls.infer_seq_length(next(iter(data.values())))
elif isinstance(data, (list, tuple)) and len(data) > 0:
_tensor: Tensor = data[0]
return cls.infer_seq_length(_tensor)
return None
@classmethod
def infer_num_microbatches(cls, data: DataT) -> Optional[int]:
"""
Infers the number of micro-batches from the input data.
Currently, this method assumes a single micro-batch for common data types.
It may need to be extended for more complex data structures or use cases.
Args:
data (DataT): The input data from which to infer the number of micro-batches.
Returns:
Optional[int]: The inferred number of micro-batches, or None if it cannot be determined.
"""
if isinstance(data, (dict, tuple, list, Tensor)):
return 1
return None
@property
def model(self) -> Union[ModelT, List[ModelT]]:
"""
Retrieves the model or list of models from the pipeline.
Returns:
Union[ModelT, List[ModelT]]: The model or list of models in the pipeline.
"""
return self.pipeline.pipeline
@property
def pl_module(self) -> "pl.LightningModule":
"""
Retrieves the PyTorch Lightning module from the pipeline.
Returns:
pl.LightningModule: The PyTorch Lightning module.
"""
return self.pipeline.module
@property
def trainer(self) -> "pl.Trainer":
"""
Retrieves the PyTorch Lightning trainer from the pipeline.
Returns:
pl.Trainer: The PyTorch Lightning trainer.
"""
return self.pipeline.trainer
@functools.cached_property
def forward_backward_func(self) -> "MegatronStepProtocol":
"""
Retrieves the forward-backward function for the Megatron model.
This property uses Megatron's scheduling to get the appropriate
forward-backward function based on the current configuration.
Returns:
MegatronStepProtocol: The function to perform forward and backward passes.
"""
from megatron.core.pipeline_parallel.schedules import get_forward_backward_func
config = self.model[0].config if isinstance(self.model, list) else self.model.config
if (
hasattr(config, "enable_cuda_graph")
and config.enable_cuda_graph
and config.cuda_graph_scope == "full_iteration"
):
if HAVE_FULL_CUDA_GRAPH:
return FullCudaGraphWrapper(get_forward_backward_func())
else:
raise ImportError(
f"FullCudaGraphWrapper is not available in this version of megatron.core ({mcore_import_msg}). "
"Please upgrade megatron.core to >= 0.14.0 to use full iteration CUDA graphs."
)
return get_forward_backward_func()
@property
def adjust_tensor_shapes_fn(self) -> Union[Callable, None]:
"""
Retrieves the function to adjust send and receive tensor shapes in Megatron-Core's forward pass.
Currently only used during non-interleaved pipelining for Distillation.
Returns:
Union[Callable, None]: The function which takes in tensor shapes and returns updated shapes,
or None if not applicable.
"""
from nemo.collections.llm.modelopt.distill.utils import get_tensor_shapes_adjust_fn_for_distillation
return get_tensor_shapes_adjust_fn_for_distillation(
self.model,
self.seq_length,
self.micro_batch_size,
self.decoder_seq_length,
self.forward_only,
)
def get_data_iterator_and_seq_length(self) -> Tuple[List[Iterator[DataT]], Optional[int]]:
"""
Converts the provided data into a list of iterators.
For finetuning, where sequence length is different for each step, this function also outputs the
sequence length of the current batch.
Returns:
List[Iterator[DataT]]: A list of iterators created from the input data.
"""
has_dataloader_idx = False
if self.has_global_batch_sampler:
batch_data = next(self.data)
if isinstance(batch_data, tuple) and len(batch_data) == 3:
batch, batch_idx, dataloader_idx = batch_data
has_dataloader_idx = True
else:
batch, batch_idx, dataloader_idx = batch_data[0], None, None
# finetuning can have dynamic sequence lengths
seq_length = batch['tokens'].size(1) if 'tokens' in batch else None
from nemo.collections.nlp.modules.common.megatron.utils import get_iterator_k_split
data = get_iterator_k_split(batch, self.num_microbatches, True)
if has_dataloader_idx:
packed_data = [(d, batch_idx, dataloader_idx) for d in data]
data = itertools.chain(packed_data)
else:
data = self.data
# for pretraining (fixed sequence length), we use seq_length inferred from the data sampler.
seq_length = None
data = self.to_data_iterator_list(data)
return data, seq_length
@functools.cached_property
def has_global_batch_sampler(self) -> bool:
# FIXME: cleanup the following code is here for backwards compatibility with nemo1.
# The "batch" sampler is a nemo1 sampler. It requires some custom code here to use
# (if use_global_batch_sampler), by default we shouldn't use this "batch" sampler probably.
if getattr(self.trainer, "datamodule", None) is not None:
use_global_batch_sampler = self.trainer.datamodule.data_sampler.dataloader_type == 'batch'
elif getattr(self.trainer, "predict_dataloaders", None) is not None:
from nemo.collections.common.data.data_samplers import MegatronPretrainingBatchSampler # noqa: I001
# The batch_sampler gets injected into the dataloader by the data_sampler. When doing
# predict without a datamodule we can look inside the dataloader's batch_sampler to see
# if it is the nemo1 style sampler that we need to handle specially below.
use_global_batch_sampler = isinstance(
self.trainer.predict_dataloaders.batch_sampler, MegatronPretrainingBatchSampler
)
else:
use_global_batch_sampler = False
return use_global_batch_sampler
class CallbackMethods:
"""
Defines callback methods for various stages of the Megatron model's execution.
This class outlines the structure for callbacks that can be implemented to hook into
different phases of the Megatron model's training or inference process. Each method
represents a specific point in the execution where custom logic can be inserted.
"""
def on_megatron_step_start(self, step: MegatronStep) -> MegatronStep:
"""
Called at the beginning of each Megatron step.
This method is invoked before any processing of the step begins. It allows for
any necessary setup or initialization for the step.
Args:
step (MegatronStep): The MegatronStep object representing the current step.
Returns:
MegatronStep: The potentially modified MegatronStep object.
"""
...
def on_megatron_microbatches_start(self, step: MegatronStep) -> None:
"""
Called before processing of microbatches begins.
This method is invoked just before the model starts processing the microbatches
within a step. It can be used for any preparations needed before microbatch processing.
Args:
step (MegatronStep): The MegatronStep object representing the current step.
"""
...
def on_megatron_microbatch_start(
self,
step: MegatronStep,
batch: DataT,
forward_callback: "MegatronLossReduction",
) -> None:
"""
Called at the start of processing each microbatch.
This method is invoked before the forward pass of each microbatch. It provides
access to the current batch data and the loss reduction callback.
Args:
step (MegatronStep): The MegatronStep object representing the current step.
batch (DataT): The current microbatch of data being processed.
forward_callback (MegatronLossReduction): The callback for loss reduction.
"""
...
def on_megatron_microbatch_end(
self,
step: MegatronStep,
batch: DataT,
forward_callback: "MegatronLossReduction",
output: Any,
) -> None:
"""
Called at the end of processing each microbatch.
This method is invoked after the forward pass of each microbatch. It provides
access to the processed batch, the loss reduction callback, and the output of the forward pass.
Args:
step (MegatronStep): The MegatronStep object representing the current step.
batch (DataT): The microbatch of data that was processed.
forward_callback (MegatronLossReduction): The callback for loss reduction.
output (Any): The output from the forward pass for this microbatch.
"""
...
def on_megatron_microbatches_end(self, step: MegatronStep, microbatch_outputs: List[Any]) -> None:
"""
Called after all microbatches in a step have been processed.
This method is invoked once all microbatches within a step have been processed.
It provides access to the outputs from all microbatches.
Args:
step (MegatronStep): The MegatronStep object representing the current step.
microbatch_outputs (List[Any]): A list of outputs from all processed microbatches.
"""
...
def on_megatron_reduce_microbatches_start(
self,
step: MegatronStep,
microbatch_outputs: List[Any],
) -> None:
"""
Called before the reduction of microbatch outputs begins.
This method is invoked just before the model starts reducing (e.g., averaging)
the outputs from all microbatches. It can be used for any preparations needed
before the reduction process.
Args:
step (MegatronStep): The MegatronStep object representing the current step.
microbatch_outputs (List[Any]): A list of outputs from all processed microbatches.
"""
...
def on_megatron_reduce_microbatches_end(
self,
step: MegatronStep,
microbatch_outputs: List[Any],
loss_reduction: "MegatronLossReduction",
reduced: Union[torch.Tensor, Dict[str, torch.Tensor]],
) -> None:
"""
Called after the reduction of microbatch outputs is complete.
This method is invoked after the model has finished reducing the outputs from
all microbatches. It provides access to the original microbatch outputs,
the loss reduction object, and the final reduced output.
Args:
step (MegatronStep): The MegatronStep object representing the current step.
microbatch_outputs (List[Any]): A list of outputs from all processed microbatches.
loss_reduction (MegatronLossReduction): The object used for loss reduction.
reduced (Union[torch.Tensor, Dict[str, torch.Tensor]]): The final reduced output.
"""
...
def on_megatron_step_end(
self,
step: MegatronStep,
microbatch_outputs: List[Any],
reduced: Optional[Union[torch.Tensor, Dict[str, torch.Tensor]]] = None,
) -> None:
"""
Called at the end of each Megatron step.
This method is invoked after all processing for a step is complete. It provides
access to the outputs from all microbatches and the final reduced output (if available).
Args:
step (MegatronStep): The MegatronStep object representing the current step.
microbatch_outputs (List[Any]): A list of outputs from all processed microbatches.
reduced (Optional[Union[torch.Tensor, Dict[str, torch.Tensor]]]): The final reduced
output, if available. This may be None for certain configurations or pipeline stages.
"""
...
ReductionT = TypeVar("ReductionT")
class MegatronLossReduction(nn.Module, Generic[DataT, ReductionT]):
def __init__(self) -> None:
super(MegatronLossReduction, self).__init__()
self.batch = None
self.register_forward_pre_hook(self._pre_forward_hook)
def setup(self, batch) -> None:
self.batch = batch
def _pre_forward_hook(self, module, x):
return (self.batch,) + x
def forward(self, batch: DataT, forward_out: torch.Tensor) -> Tuple[torch.Tensor, ReductionT]:
raise NotImplementedError("Must be implemented by subclass.")
@abc.abstractmethod
def reduce(self, losses_reduced_per_micro_batch: Sequence[ReductionT]) -> torch.Tensor:
raise NotImplementedError("Must be implemented by subclass.")
@runtime_checkable
class MegatronCallbackProtocol(Protocol):
def __call__(self, tensor: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: ...
@runtime_checkable
class MegatronStepProtocol(Protocol):
def __call__(
self,
*,
forward_step_func,
data_iterator: Union[Iterator, List[Iterator]],
model: Union[torch.nn.Module, List[torch.nn.Module]],
num_microbatches: int,
seq_length: int,
micro_batch_size: int,
decoder_seq_length: Optional[int] = None,
forward_only: bool = False,
collect_non_loss_data: bool = False,
) -> list: ...
def _calc_number_of_params(model: List[nn.Module]) -> int:
assert isinstance(model, list)
return sum([sum([p.nelement() for p in model_module.parameters()]) for model_module in model])
def _calc_number_of_trainable_params(model: List[nn.Module]) -> int:
assert isinstance(model, list)
return sum([sum([p.numel() for p in model_module.parameters() if p.requires_grad]) for model_module in model])
def is_list_of_iterators(var) -> bool:
if not isinstance(var, list):
return False
return all(isinstance(item, collections.abc.Iterator) for item in var)
def _make_data_iterator_list(model, data_iterator: Iterator) -> List[Iterator]:
"""Convert data iterator into form expected by Megatron.
With interleaved pipeline parallelism, Megatron expects a
list of one data iterator per model chunk. Each model
chunk independently gets data from its data iterator, so
we need to interact with the data iterator multiple times
for each microbatch step. Instead of incorporating this
logic into the data loader, we cache the iterator's output
to the first model chunk and reuse it in the other model
chunks.
"""
if not isinstance(model, list) or len(model) == 1:
return data_iterator # TODO @tmoon: Remove
# TODO @tmoon: Use once available in Megatron-LM
# return DataIteratorList([data_iterator])
class CachingIterator:
"""Iterator wrapper that caches values."""
class Proxy:
"""Returns values from caching iterator wrapper.
Assumed to never advance past the caching iterator.
"""
def __init__(self):
self.cache = queue.Queue()
def __iter__(self):
return self
def __next__(self):
return self.cache.get_nowait()
def __init__(self, iterator: Iterator):
self.iterator = iterator
self.proxies = []
def make_proxy(self):
self.proxies.append(CachingIterator.Proxy())
return self.proxies[-1]
def __iter__(self):
return self
def __next__(self):
val = next(self.iterator)
for proxy in self.proxies:
proxy.cache.put(val)
return val
# Make list of iterator wrappers
iters = [CachingIterator(data_iterator)]
while len(iters) < len(model):
iters.append(iters[0].make_proxy())
return iters # TODO @tmoon: Remove
# TODO @tmoon: Use once available in Megatron-LM
# return DataIteratorList(iters)
class MaskedTokenLossReduction(MegatronLossReduction):
def __init__(self, validation_step: bool = False, val_drop_last: bool = True) -> None:
super().__init__()
self.validation_step = validation_step
self.val_drop_last = val_drop_last
def forward(
self, batch: Dict[str, torch.Tensor], forward_out: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, torch.Tensor]]:
"""Taken from: https://github.com/NVIDIA/NeMo/blob/main
/nemo/collections/nlp/models/language_modeling/megatron_gpt_model.py#L951-L976 ."""
# neva returns (logits, loss_mask)
if isinstance(forward_out, tuple):
forward_out, loss_mask = forward_out
batch["loss_mask"] = loss_mask
loss_sum, num_valid_tokens = masked_token_loss(forward_out, batch["loss_mask"])
if self.validation_step and not self.val_drop_last and loss_sum.isnan():
assert num_valid_tokens == 0, "Got NaN loss with non-empty input"
loss_sum = torch.zeros_like(num_valid_tokens)
num_valid_tokens = num_valid_tokens.clone().detach().to(torch.int)
loss_sum_and_ub_size = torch.cat([loss_sum.clone().detach().view(1), num_valid_tokens.view(1)])
return loss_sum, num_valid_tokens, {"loss_sum_and_ub_size": loss_sum_and_ub_size}
def reduce(self, losses_reduced_per_micro_batch) -> torch.Tensor:
"""Taken from: https://github.com/NVIDIA/NeMo/blob/main
/nemo/collections/nlp/models/language_modeling/megatron_gpt_model.py#L535-L552 ."""
if losses_reduced_per_micro_batch:
if "avg" in losses_reduced_per_micro_batch[0]:
# legacy behavior, average over the number of microbatches
avg = [x["avg"] for x in losses_reduced_per_micro_batch]
loss = torch.cat(avg).mean()
return loss
from megatron.core import parallel_state
loss_sum_and_ub_size = [
x["loss_sum_and_ub_size"] for x in losses_reduced_per_micro_batch if x["loss_sum_and_ub_size"][1] > 0
]
loss = (
torch.vstack(loss_sum_and_ub_size).sum(dim=0)
if len(loss_sum_and_ub_size) > 0
else torch.tensor([0.0, 0.0], device=torch.cuda.current_device())
)
torch.distributed.all_reduce(
loss,
group=parallel_state.get_data_parallel_group(with_context_parallel=True),
)
# average over the total number of tokens across the global batch.
loss = loss[0] / loss[1]
return loss
return torch.tensor(0.0, device=torch.cuda.current_device())
class MaskedTokenLossReductionWithLossMask(MaskedTokenLossReduction):
def forward(
self,
batch: Dict[str, torch.Tensor],
forward_out: Tuple[torch.Tensor, torch.Tensor],
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
# expecting returns (token_level_loss, loss_mask)
forward_out, loss_mask = forward_out
batch["loss_mask"] = loss_mask
return super().forward(batch, forward_out)
def masked_token_loss(tensor: Tensor, mask: Tensor):
"""
The function takes as input per-token loss and masks non-required values.
"""
losses = tensor.view(-1).float()
loss_mask = mask.view(-1).float()
loss_sum = torch.sum(losses * loss_mask) # sequence level nll
num_valid_tokens = loss_mask.sum()
return loss_sum, num_valid_tokens
@contextmanager
def moe_loss_tracker_ctx():
from megatron.core.transformer.moe.moe_utils import (
clear_aux_losses_tracker,
reduce_aux_losses_tracker_across_ranks,
)
reduce_aux_losses_tracker_across_ranks()
try:
yield
finally:
clear_aux_losses_tracker()
@torch.no_grad()
def aggregate_moe_loss_stats(loss_scale=1.0):
with moe_loss_tracker_ctx():
tracker = get_moe_layer_wise_logging_tracker()
aux_losses = {k: v['values'].float() * loss_scale for k, v in tracker.items()}
total_loss_dict = {}
for name, loss_list in aux_losses.items():
if name not in total_loss_dict:
total_loss_dict[name] = 0
total_loss_dict[name] += loss_list.mean().item()
return total_loss_dict
|