Spaces:
Runtime error
Runtime error
File size: 32,251 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import itertools
import os
from collections import defaultdict
from contextlib import contextmanager
from typing import TYPE_CHECKING, Any, Callable, Dict, Generator, Mapping, Optional, Protocol, TypeVar
import torch
from torch import nn
from nemo.lightning.megatron_init import initialize_model_parallel_for_nemo
from nemo.utils import logging
NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE = "NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE"
if TYPE_CHECKING:
from lightning.fabric.utilities.types import Optimizable
from megatron.core.model_parallel_config import ModelParallelConfig
class SharedStateDictProtocol(Protocol):
""" """
def sharded_state_dict(self, prefix="", metadata: Optional[dict] = None):
""" """
...
def init_parallel_ranks(
world_size: int,
global_rank: int,
local_rank: int,
parallel_config: "ModelParallelConfig",
seed=1234,
fp8=False,
) -> None:
"""
Initializes the parallel ranks for distributed training.
This function sets up the parallel ranks based on the provided world size, global rank, local rank,
and parallel configuration. It also sets the seed for random number generation and determines whether
to use fp8 precision.
Args:
world_size (int): The total number of processes participating in the distributed training.
global_rank (int): The rank of the current process in the distributed training setup.
local_rank (int): The rank of the current process within its machine.
parallel_config (ModelParallelConfig): The configuration object containing settings for model parallelism.
seed (int, optional): The seed for random number generation. Defaults to 1234.
fp8 (bool, optional): Whether to use fp8 precision for model parameters. Defaults to False.
"""
from nemo.utils import AppState
app_state = AppState()
if os.environ.get(NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE, "false").lower() == "true":
init_world_size = app_state.tensor_model_parallel_size * app_state.pipeline_model_parallel_size
init_global_rank = app_state.global_rank
init_local_rank = app_state.local_rank
else:
init_world_size = world_size
pp = parallel_config.pipeline_model_parallel_size or 1
if world_size < pp:
raise ValueError(f"Expected world_size ({world_size}) to be greater than/equal to pipeline size ({pp})")
init_global_rank = global_rank
init_local_rank = local_rank
initialize_model_parallel_for_nemo(
world_size=init_world_size,
global_rank=init_global_rank,
local_rank=init_local_rank,
tensor_model_parallel_size=parallel_config.tensor_model_parallel_size,
expert_model_parallel_size=parallel_config.expert_model_parallel_size,
expert_tensor_parallel_size=parallel_config.expert_tensor_parallel_size,
pipeline_model_parallel_size=parallel_config.pipeline_model_parallel_size,
pipeline_model_parallel_comm_backend=parallel_config.pipeline_model_parallel_comm_backend,
virtual_pipeline_model_parallel_size=parallel_config.virtual_pipeline_model_parallel_size,
context_parallel_size=parallel_config.context_parallel_size,
seed=seed,
use_fp8=fp8,
init_mpi_proc_group=getattr(parallel_config, "tp_comm_overlap", False)
and getattr(parallel_config, "tp_comm_bootstrap_backend", None) == 'mpi',
use_te_rng_tracker=getattr(parallel_config, "use_te_rng_tracker", False),
use_sharp=getattr(parallel_config, "use_sharp", False),
use_tp_pp_dp_mapping=getattr(parallel_config, "use_tp_pp_dp_mapping", False),
num_distributed_optimizer_instances=getattr(parallel_config, "num_distributed_optimizer_instances", 1),
nccl_communicator_config_path=getattr(parallel_config, "nccl_communicator_config_path", None),
use_gloo_process_groups=getattr(parallel_config, "use_gloo_process_groups", True),
# apex_transformer_log_level=self.cfg.get('apex_transformer_log_level', 30),
)
def init_model_parallel(model: Optional[nn.Module] = None) -> None:
"""Initializes Megatron-LM model parallel if using model parallelism."""
import torch.distributed
from megatron.core import parallel_state
from nemo.utils import AppState
app_state = AppState()
# we initialize megatron-lm model parallel and data parallel groups
# after initializing DDP with PTL.
if app_state.model_parallel_size is not None:
# destroy groups in case they have already been created
# this happens with multiple calls to trainer.test for example
parallel_state.destroy_model_parallel()
if torch.distributed.is_initialized():
parallel_state.initialize_model_parallel(
tensor_model_parallel_size=app_state.tensor_model_parallel_size,
pipeline_model_parallel_size=app_state.pipeline_model_parallel_size,
virtual_pipeline_model_parallel_size=app_state.virtual_pipeline_model_parallel_size,
pipeline_model_parallel_comm_backend=app_state.pipeline_model_parallel_comm_backend,
context_parallel_size=app_state.context_parallel_size,
expert_model_parallel_size=app_state.expert_model_parallel_size,
expert_tensor_parallel_size=app_state.expert_tensor_parallel_size,
use_sharp=app_state.use_sharp,
order="tp-cp-ep-pp-dp" if app_state.use_tp_pp_dp_mapping else "tp-cp-ep-dp-pp",
num_distributed_optimizer_instances=app_state.num_distributed_optimizer_instances,
nccl_communicator_config_path=app_state.nccl_communicator_config_path,
create_gloo_process_groups=app_state.use_gloo_process_groups,
)
# assert that fake tp and pp rank match after model parallel init
assert app_state.tensor_model_parallel_rank == parallel_state.get_tensor_model_parallel_rank()
assert app_state.pipeline_model_parallel_rank == parallel_state.get_pipeline_model_parallel_rank()
assert app_state.expert_tensor_parallel_rank == parallel_state.get_expert_tensor_parallel_rank()
app_state.tensor_model_parallel_group = parallel_state.get_tensor_model_parallel_group()
app_state.data_parallel_group = parallel_state.get_data_parallel_group()
app_state.data_parallel_rank = parallel_state.get_data_parallel_rank()
app_state.data_parallel_size = parallel_state.get_data_parallel_world_size()
app_state.pipeline_model_parallel_group = parallel_state.get_pipeline_model_parallel_group()
# create MPI process group for UCX-based communication APIs
if app_state.init_mpi_proc_group:
torch.distributed.new_group(backend="mpi")
def set_model_parallel_attributes(model, parallelism):
""" """
# Right now mcore sub-classes ModelParellelConfig, we should remove that
# Given Lightning's structure it would be better if parallelism is a different object
# Since then it can be passed to the Strategy
# Note: Importing nemo.lightning.pytorch.strategies creates an import cycle.
from megatron.core.transformer.transformer_config import TransformerConfig
has_mcore_config = isinstance(getattr(model, "config", None), TransformerConfig)
if has_mcore_config and hasattr(model, "configure_model"):
config: TransformerConfig = model.config
for attr_name in filter(lambda x: not x.startswith('__'), dir(parallelism)):
if not hasattr(config, attr_name):
continue
setattr(config, attr_name, getattr(parallelism, attr_name))
if hasattr(config, "__io__"):
setattr(config.__io__, attr_name, getattr(parallelism, attr_name))
if hasattr(config, '__post_init__'):
# MCore does not use args in __post_init__
# @akoumparouli: is there a better way (e.g. reinit config)?
config.__post_init__()
return config
return None
@contextmanager
def megatron_lazy_init_context(config) -> Generator[None, None, None]:
""" """
try:
from megatron.core.extensions import transformer_engine as _te
original = _te._get_extra_te_kwargs # noqa: SLF001
def _get_extra_te_kwargs_meta(c):
"""Forces device to meta"""
kwargs = original(c)
kwargs['device'] = 'meta'
return kwargs
_te._get_extra_te_kwargs = _get_extra_te_kwargs_meta # noqa: SLF001
except ImportError:
pass
_orig_perform_initialization = config.perform_initialization
_orig_use_cpu_initialization = config.use_cpu_initialization
config.perform_initialization = False
config.use_cpu_initialization = True
yield
try:
from megatron.core.extensions import transformer_engine as _te
_te._get_extra_te_kwargs = original # noqa: SLF001
except ImportError:
pass
config.perform_initialization = _orig_perform_initialization
config.use_cpu_initialization = _orig_use_cpu_initialization
@contextmanager
def megatron_cpu_init_context(config) -> Generator[None, None, None]:
""" """
_orig_use_cpu_initialization = config.use_cpu_initialization
config.use_cpu_initialization = True
yield
config.use_cpu_initialization = _orig_use_cpu_initialization
ModelT = TypeVar("ModelT", bound=nn.Module)
class GradScaler(torch.cuda.amp.GradScaler):
"""
Gradient sclaer for model-parallel inf check. The inf in gradients are checked across tensor-parallel
ranks in (1) executing optimizer step and (2) gradient scaler update.
"""
def __init__(
self,
init_scale=2.0**16,
growth_factor=2.0,
backoff_factor=0.5,
growth_interval=2000,
enabled=True,
hysteresis=1,
):
super().__init__(
init_scale=init_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
enabled=enabled,
)
self.optimizer_update_skipped: Optional[bool] = None
self.hysteresis = hysteresis
self._hysteresis_tracker = self.hysteresis
def _unscale_grads_(self, optimizer, *args):
if getattr(optimizer, "_custom_amp_unscale_grads", False):
return optimizer.unscale_grads(*args)
else:
return super()._unscale_grads_(optimizer, *args)
def _maybe_opt_step(self, optimizer, optimizer_state, *args, **kwargs):
from megatron.core import parallel_state
retval = None
found_inf = torch.cuda.FloatTensor([sum(v.item() for v in optimizer_state["found_inf_per_device"].values())])
# Update across all model parallel instances.
torch.distributed.all_reduce(
found_inf,
op=torch.distributed.ReduceOp.MAX,
group=parallel_state.get_model_parallel_group(),
)
if found_inf.item() == 0:
retval = optimizer.step(*args, **kwargs)
self.optimizer_update_skipped = False
else:
self.optimizer_update_skipped = True
return retval
def update(self, new_scale=None):
"""
Updates to native grad scaler update function.
1. Check inf across model-parallel ranks.
2. Update hysteresis tracker.
3. Apply hysteresis to grad scale update.
"""
from megatron.core import parallel_state
if not self._enabled:
return
_scale, _growth_tracker = self._check_scale_growth_tracker("update")
if new_scale is not None:
# Accept a new user-defined scale.
if isinstance(new_scale, float):
self._scale.fill_(new_scale) # type: ignore[union-attr]
else:
reason = (
"new_scale should be a float or a 1-element torch.cuda.FloatTensor with" " requires_grad=False."
)
assert isinstance(new_scale, torch.cuda.FloatTensor), reason # type: ignore[attr-defined]
assert new_scale.numel() == 1, reason
assert new_scale.requires_grad is False, reason
self._scale.copy_(new_scale) # type: ignore[union-attr]
else:
# Consume shared inf/nan data collected from optimizers to update the scale.
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
found_infs = [
found_inf.to(device=_scale.device, non_blocking=True)
for state in self._per_optimizer_states.values()
for found_inf in state["found_inf_per_device"].values()
]
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
found_inf_combined = found_infs[0]
# Update across all model parallel instances.
torch.distributed.all_reduce(
found_inf_combined,
op=torch.distributed.ReduceOp.MAX,
group=parallel_state.get_model_parallel_group(),
)
if len(found_infs) > 1:
for i in range(1, len(found_infs)):
found_inf = found_infs[i]
# Update across all model parallel instances.
torch.distributed.all_reduce(
found_inf,
op=torch.distributed.ReduceOp.MAX,
group=parallel_state.get_model_parallel_group(),
)
found_inf_combined += found_inf
if found_inf_combined > 0:
self._hysteresis_tracker -= 1
if self._hysteresis_tracker <= 0:
# When hysteresis becomes zero, follow the native grad scale update rule.
# Increase scale and reset growth tracker
torch._amp_update_scale_( # noqa: SLF001
_scale,
_growth_tracker,
found_inf_combined,
self._growth_factor,
self._backoff_factor,
self._growth_interval,
)
else:
# Only reset the growth tracker when hysteresis is larger than zero
_growth_tracker.fill_(0.0)
else:
# When no inf found, follow the native grad scale update rule.
# Increment growth_tracker, update scale when growth tracker reaches the interval, and
# reset the hysteresis tracker.
torch._amp_update_scale_( # noqa: SLF001
_scale,
_growth_tracker,
found_inf_combined,
self._growth_factor,
self._backoff_factor,
self._growth_interval,
)
self._hysteresis_tracker = self.hysteresis
# To prepare for next iteration, clear the data collected from optimizers this iteration.
self._per_optimizer_states = defaultdict(
torch.cuda.amp.grad_scaler._refresh_per_optimizer_state # noqa: SLF001
)
def state_dict(self):
"""
Add hysteresis_tracker to the native functions' state_dict.
"""
return (
{
"scale": self.get_scale(),
"growth_factor": self._growth_factor,
"backoff_factor": self._backoff_factor,
"growth_interval": self._growth_interval,
"_growth_tracker": self._get_growth_tracker(),
"_hysteresis_tracker": self._hysteresis_tracker,
}
if self._enabled
else {}
)
def load_state_dict(self, state_dict):
"""
Load hysteresis_tracker in addition to the state dict of the native function.
"""
if not self._enabled:
return
if len(state_dict) == 0:
raise RuntimeError(
"The source state dict is empty, possibly because it was saved "
"from a disabled instance of GradScaler."
)
self._init_scale = state_dict["scale"]
if self._scale is not None:
self._scale.fill_(state_dict["scale"])
self._growth_factor = state_dict["growth_factor"]
self._backoff_factor = state_dict["backoff_factor"]
self._growth_interval = state_dict["growth_interval"]
self._init_growth_tracker = state_dict["_growth_tracker"]
if self._growth_tracker is not None:
self._growth_tracker.fill_(state_dict["_growth_tracker"])
if "_hysterisis_tracker" in state_dict:
self._hysteresis_tracker = state_dict["_hysterisis_tracker"]
else:
self._hysteresis_tracker = 1
def enable_nvidia_optimizations() -> None:
"""These optimizations are present in NVIDIA NGC PyTorch Containers."""
# NVIDIA container version check
nvidia_torch_version = os.getenv("NVIDIA_PYTORCH_VERSION", None)
if nvidia_torch_version is not None:
try:
NVIDIA_TORCH_MAJOR = int(nvidia_torch_version.split(".")[0])
except Exception:
NVIDIA_TORCH_MAJOR = 0
try:
NVIDIA_TORCH_MINOR = int(nvidia_torch_version.split(".")[1])
except Exception:
NVIDIA_TORCH_MINOR = 0
# NVFUSER available starting with 21.11
if NVIDIA_TORCH_MAJOR >= 21 or (NVIDIA_TORCH_MAJOR == 21 and NVIDIA_TORCH_MINOR >= 11):
# NVFUSER
torch._C._jit_set_profiling_executor(True) # noqa: SLF001
torch._C._jit_set_profiling_mode(True) # noqa: SLF001
torch._C._jit_override_can_fuse_on_cpu(False) # noqa: SLF001
torch._C._jit_override_can_fuse_on_gpu(False) # noqa: SLF001
torch._C._jit_set_texpr_fuser_enabled(False) # noqa: SLF001
# torch._C._jit_set_nvfuser_enabled(True)
torch._C._debug_set_autodiff_subgraph_inlining(False) # noqa: SLF001
else:
# Not a Nvidia container. NVFUSER Dependency check is on users
pass
def optimizer_sharded_state_dict(
model: SharedStateDictProtocol,
optimizer: "Optimizable",
is_loading: bool = False,
sharding_type: Optional[str] = None,
metadata: Optional[dict] = None,
) -> Dict[str, torch.Tensor]:
"""
Sharded state dictionary for an MainParamsOptimizerWrapper.
Used to save and load the optimizer state when training with distributed_checkpoint.
Args:
model (SharedStateDictProtocol): model with a `sharded_state_dict` method
optimizer (Optimizable): optimizer to get the state dict of
is_loading (bool, optional): set to True if the sharded state dict is intended
for checkpoint loading (as opposed to saving). Defaults to False.
sharding_type (str, optional): deprecated, use metadata flags instead.
metadata (dict, optional): sharded state dict metadata passed from the framework.
Used to control the details of sharded state dict creation, in particular
the state dict format of the DistributedOptimizer with the flag
`distrib_optim_sharding_type`. Defaults to None (empty metadata).
Returns
-------
dict: The sharded state dictionary for the optimizer
Raises:
ValueError: If a parameter ID does not match any model sharded parameter.
"""
from megatron.core.dist_checkpointing.optimizer import (
get_param_id_to_sharded_param_map,
make_sharded_optimizer_tensor,
optim_state_to_sharding_state,
)
from nemo.core.optim import MainParamsOptimizerWrapper
from nemo.core.optim.optimizers import init_optimizer_states
model_sharded_state_dict = model.sharded_state_dict(metadata=metadata)
# remove _extra_state
model_sharded_state_dict = {
key: value for key, value in model_sharded_state_dict.items() if not key.endswith("_extra_state")
}
if sharding_type is not None:
logging.warning("sharding_type is deprecated, please use `metadata['distrib_optim_sharding_type']` instead")
if metadata is None:
metadata = {}
if 'distrib_optim_sharding_type' not in metadata:
metadata["distrib_optim_sharding_type"] = sharding_type
if hasattr(optimizer, "sharded_state_dict"):
return optimizer.sharded_state_dict(
model_sharded_state_dict,
is_loading=is_loading,
metadata=metadata,
)
if not isinstance(optimizer, MainParamsOptimizerWrapper):
# Regular optimizer, e.g. Adam or FusedAdam
init_optimizer_states(optimizer)
optimizer_state_dict = optimizer.state_dict()
id_to_sharded_param_map = get_param_id_to_sharded_param_map(
model_sharded_state_dict=model_sharded_state_dict,
optim_params_iter=itertools.chain.from_iterable(g['params'] for g in optimizer.param_groups),
)
optim_state_to_sharding_state(optimizer_state_dict, id_to_sharded_param_map)
return optimizer_state_dict
optimizer_state_dict: Dict[str, Any] = optimizer.state_dict()
id_to_sharded_param_map = get_param_id_to_sharded_param_map(
model_sharded_state_dict=model_sharded_state_dict,
optim_params_iter=itertools.chain.from_iterable(g for g in optimizer.float16_groups),
)
# Convert fp32_from_fp16_params
assert len(optimizer_state_dict["fp32_from_fp16_params"]) == len(optimizer_state_dict["optimizer"]["param_groups"])
def get_safe(param_id):
try:
return id_to_sharded_param_map[param_id]
except KeyError as e:
raise ValueError(f"Param id {param_id} does not match any model sharded param") from e
optimizer_state_dict["fp32_from_fp16_params"] = [
[
make_sharded_optimizer_tensor(get_safe(param_id), fp32_param, prefix="optimizer.state.fp32_param")
for param_id, fp32_param in zip(state_group["params"], fp32_group)
]
for fp32_group, state_group in zip(
optimizer_state_dict["fp32_from_fp16_params"],
optimizer_state_dict["optimizer"]["param_groups"],
)
]
# Convert state
optim_state_to_sharding_state(optimizer_state_dict["optimizer"], id_to_sharded_param_map)
return optimizer_state_dict
def load_model_state_dict(megatron_parallel, checkpoint: Mapping[str, Any], strict: bool = True) -> None:
""" """
from megatron.core import parallel_state
from megatron.core.dist_checkpointing.validation import StrictHandling, parse_strict_flag
# convert from StrictHandling to bool for PTL
if strict is not None and not isinstance(strict, bool):
strict = parse_strict_flag(strict)
strict_options = [
StrictHandling.ASSUME_OK_UNEXPECTED,
StrictHandling.RAISE_UNEXPECTED,
StrictHandling.RAISE_ALL,
]
strict = strict in strict_options
try:
from megatron.core.distributed.custom_fsdp import FullyShardedDataParallel
have_custom_fsdp = True
except ImportError or ModuleNotFoundError:
have_custom_fsdp = False
try:
from megatron.core.distributed import FullyShardedDataParallel
have_megatron_fsdp = True
except ImportError or ModuleNotFoundError:
have_megatron_fsdp = False
for index, module in enumerate(megatron_parallel):
if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None:
if "state_dict" in checkpoint:
checkpoint_state_dict = checkpoint["state_dict"][f"model_{index}"]
else:
checkpoint_state_dict = checkpoint[f"model_{index}"]
else:
if "state_dict" in checkpoint:
checkpoint_state_dict = checkpoint["state_dict"]
else:
checkpoint_state_dict = checkpoint
n_nesting = 0
mcore_model = megatron_parallel.module
while hasattr(mcore_model, "module"):
mcore_model = mcore_model.module
n_nesting += 1
_state_dict = {}
for key, value in checkpoint_state_dict.items():
# Count the number of "module." at the start of the key
count, _key = 0, key
while _key.startswith("module."):
_key = _key[len("module.") :]
count += 1
# Adjust the number of "module." prefixes
if count < n_nesting:
to_add = "module." * (n_nesting - count)
_state_dict[f"{to_add}{key}"] = value
elif count > n_nesting:
to_remove = "module." * (count - n_nesting)
_state_dict[key[len(to_remove) :]] = value
else:
_state_dict[key] = value
if have_custom_fsdp and hasattr(module, "module") and isinstance(module.module, FullyShardedDataParallel):
module.module.load_state_dict(_state_dict, strict=strict)
elif have_megatron_fsdp and hasattr(module, "module") and isinstance(module.module, FullyShardedDataParallel):
module.module.load_state_dict(_state_dict, strict=strict)
continue
try:
module.load_state_dict(_state_dict, strict=strict)
except RuntimeError as e:
missing_keys, expected_keys = module.load_state_dict(checkpoint_state_dict, strict=False)
if all(s.endswith('_extra_state') for s in missing_keys):
logging.warning(
f'Loding checkpoint created with Transformer Engine version lower than 1.13. '
f'Missing layers {missing_keys} will be ignored.'
)
else:
raise e
def _sync_from_last_pipeline_stage(value: torch.Tensor, broadcast: bool = False):
"""
When pipeline parallelism is enabled,
casts a tensor defined on the last pipeline stage to other ranks.
Args:
value (torch.Tensor): A tensor to be casted from the final pipeline stage of
a pipeline parallelism group (e.g. loss).
Note that this tensor should already be defined on the target rank(s) to fill with received data.
broadcast (bool): When True, broadcasts value from the final pipeline stage rank to all ranks in its group.
When False, only rank zero receives value from the final pipeline stage rank in its group.
This mode exists to avoid slow one-to-many communication when not necessary. Defaults to False.
"""
from megatron.core import parallel_state
if parallel_state.get_pipeline_model_parallel_world_size() > 1:
src_rank = parallel_state.get_pipeline_model_parallel_last_rank()
if not broadcast:
pp_ranks = torch.distributed.get_process_group_ranks(parallel_state.get_pipeline_model_parallel_group())
if torch.distributed.get_rank() == src_rank and 0 in pp_ranks:
torch.distributed.send(value, 0)
elif torch.distributed.get_rank() == 0:
torch.distributed.recv(value, src_rank)
else:
torch.distributed.broadcast(
value,
src_rank,
group=parallel_state.get_pipeline_model_parallel_group(),
)
def setup_megatron_optimizer(
model,
config,
no_weight_decay_cond: Optional[Callable] = None,
scale_lr_cond: Optional[Callable] = None,
lr_mult: float = 1.0,
):
""" """
from megatron.core.optimizer import OptimizerConfig, get_megatron_optimizer
from nemo.core.optim import McoreDistributedOptimizer
from nemo.utils import AppState
app_state = AppState()
assert isinstance(config, OptimizerConfig), f"Expected OptimizerConfig, got {type(config)}"
class McoreOpt(McoreDistributedOptimizer):
""" """
def sharded_state_dict(
self,
model_sharded_state_dict,
optimizer_state_dict=None,
is_loading=False,
sharding_type='fully_sharded_model_space',
metadata=None,
):
mcore_optimizer_sig = inspect.signature(self.mcore_optimizer.sharded_state_dict).parameters
distrib_optim_kwargs = {}
if "metadata" in mcore_optimizer_sig or "kwargs" in mcore_optimizer_sig:
distrib_optim_kwargs["metadata"] = metadata
elif "sharding_type" in mcore_optimizer_sig:
distrib_optim_kwargs["sharding_type"] = sharding_type
state_dict = self.mcore_optimizer.sharded_state_dict(
model_sharded_state_dict, is_loading=is_loading, **distrib_optim_kwargs
)
return state_dict
# megatron optimizer expects McoreDDP
ddp_modules = [m.module for m in model]
mcore_opt = get_megatron_optimizer(
config,
ddp_modules,
no_weight_decay_cond=no_weight_decay_cond,
scale_lr_cond=scale_lr_cond,
lr_mult=lr_mult,
use_gloo_process_groups=app_state.use_gloo_process_groups,
)
# Pytorch does not have the concept of an `lr_mult` or a `wd_mult` but these are added to param
# groups in megatron to control which sub-modules have different learning rates or weight
# decays. Apply the multipliers here to each param_group's lr and wd, and to reduce confusion
# change the name of these variables. We need this because nemo does not use the custom
# megatron scheduler, and the megatron scheduler is what makes use of these mult parameters:
# https://github.com/NVIDIA/Megatron-LM/blob/044e2ad5/megatron/core/optimizer_param_scheduler.py#L192-L193
for pg in mcore_opt.param_groups:
if 'pre_lr_mult' in pg or 'pre_mult_wd' in pg:
# User has already applied custom lr and wd multipliers, don't apply `lr_mult` and
# `wd_mult` again. This case may be encountered when resuming training.
continue
pg['pre_mult_lr'] = pg["lr"]
pg['pre_mult_wd'] = pg['weight_decay']
new_lr = pg["lr"] * pg.get('lr_mult', 1.0)
new_wd = pg["weight_decay"] * pg.get("wd_mult", 1.0)
pg['lr'] = new_lr
pg['weight_decay'] = new_wd
# In case a future implementation makes use of `lr_mult` and `wd_mult` directly in the
# scheduler, but accidentally also uses this function, remove `lr_mult` and `wd_mult` from
# the param groups so that the default value of 1.0 gets applied.
if 'lr_mult' in pg:
pg['pre_lr_mult'] = pg['lr_mult']
del pg['lr_mult'] # remove so downstream methods do not apply again.
if 'wd_mult' in pg:
pg['pre_wd_mult'] = pg['wd_mult']
del pg['wd_mult'] # remove so downstream methods do not apply again
if getattr(model.ddp_config, "overlap_param_gather", False) and getattr(
model.ddp_config, "align_param_gather", False
):
param_sync_func = [model_chunk.start_param_sync for model_chunk in model]
param_sync_func = param_sync_func[0] if len(model) == 1 else param_sync_func
for module in model:
module.config.param_sync_func = param_sync_func
return McoreOpt(mcore_opt)
|