Spaces:
Runtime error
Runtime error
File size: 16,865 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional
import torch
from hydra.utils import instantiate
from lightning.pytorch.loggers import TensorBoardLogger, WandbLogger
from omegaconf import MISSING, DictConfig, OmegaConf, open_dict
from omegaconf.errors import ConfigAttributeError
from torch import nn
from nemo.collections.common.parts.preprocessing import parsers
from nemo.collections.tts.losses.tacotron2loss import Tacotron2Loss
from nemo.collections.tts.models.base import SpectrogramGenerator
from nemo.collections.tts.parts.utils.helpers import (
g2p_backward_compatible_support,
get_mask_from_lengths,
tacotron2_log_to_tb_func,
tacotron2_log_to_wandb_func,
)
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import (
AudioSignal,
EmbeddedTextType,
LengthsType,
LogitsType,
MelSpectrogramType,
SequenceToSequenceAlignmentType,
)
from nemo.core.neural_types.neural_type import NeuralType
from nemo.utils import logging, model_utils
@dataclass
class Preprocessor:
_target_: str = MISSING
pad_value: float = MISSING
@dataclass
class Tacotron2Config:
preprocessor: Preprocessor = field(default_factory=lambda: Preprocessor())
encoder: Dict[Any, Any] = MISSING
decoder: Dict[Any, Any] = MISSING
postnet: Dict[Any, Any] = MISSING
labels: List = MISSING
train_ds: Optional[Dict[Any, Any]] = None
validation_ds: Optional[Dict[Any, Any]] = None
class Tacotron2Model(SpectrogramGenerator):
"""Tacotron 2 Model that is used to generate mel spectrograms from text"""
def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
# Convert to Hydra 1.0 compatible DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
cfg = model_utils.maybe_update_config_version(cfg)
# setup normalizer
self.normalizer = None
self.text_normalizer_call = None
self.text_normalizer_call_kwargs = {}
self._setup_normalizer(cfg)
# setup tokenizer
self.tokenizer = None
if hasattr(cfg, 'text_tokenizer'):
self._setup_tokenizer(cfg)
self.num_tokens = len(self.tokenizer.tokens)
self.tokenizer_pad = self.tokenizer.pad
self.tokenizer_unk = self.tokenizer.oov
# assert self.tokenizer is not None
else:
self.num_tokens = len(cfg.labels) + 3
super().__init__(cfg=cfg, trainer=trainer)
schema = OmegaConf.structured(Tacotron2Config)
# ModelPT ensures that cfg is a DictConfig, but do this second check in case ModelPT changes
if isinstance(cfg, dict):
cfg = OmegaConf.create(cfg)
elif not isinstance(cfg, DictConfig):
raise ValueError(f"cfg was type: {type(cfg)}. Expected either a dict or a DictConfig")
# Ensure passed cfg is compliant with schema
try:
OmegaConf.merge(cfg, schema)
self.pad_value = cfg.preprocessor.pad_value
except ConfigAttributeError:
self.pad_value = cfg.preprocessor.params.pad_value
logging.warning(
"Your config is using an old NeMo yaml configuration. Please ensure that the yaml matches the "
"current version in the main branch for future compatibility."
)
self._parser = None
self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
self.text_embedding = nn.Embedding(self.num_tokens, 512)
self.encoder = instantiate(self._cfg.encoder)
self.decoder = instantiate(self._cfg.decoder)
self.postnet = instantiate(self._cfg.postnet)
self.loss = Tacotron2Loss()
self.calculate_loss = True
@property
def parser(self):
if self._parser is not None:
return self._parser
ds_class_name = self._cfg.train_ds.dataset._target_.split(".")[-1]
if ds_class_name == "TTSDataset":
self._parser = None
elif hasattr(self._cfg, "labels"):
self._parser = parsers.make_parser(
labels=self._cfg.labels,
name='en',
unk_id=-1,
blank_id=-1,
do_normalize=True,
abbreviation_version="fastpitch",
make_table=False,
)
else:
raise ValueError("Wanted to setup parser, but model does not have necessary paramaters")
return self._parser
def parse(self, text: str, normalize=True) -> torch.Tensor:
if self.training:
logging.warning("parse() is meant to be called in eval mode.")
if normalize and self.text_normalizer_call is not None:
text = self.text_normalizer_call(text, **self.text_normalizer_call_kwargs)
eval_phon_mode = contextlib.nullcontext()
if hasattr(self.tokenizer, "set_phone_prob"):
eval_phon_mode = self.tokenizer.set_phone_prob(prob=1.0)
with eval_phon_mode:
if self.tokenizer is not None:
tokens = self.tokenizer.encode(text)
else:
tokens = self.parser(text)
# Old parser doesn't add bos and eos ids, so maunally add it
tokens = [len(self._cfg.labels)] + tokens + [len(self._cfg.labels) + 1]
tokens_tensor = torch.tensor(tokens).unsqueeze_(0).to(self.device)
return tokens_tensor
@property
def input_types(self):
if self.training:
return {
"tokens": NeuralType(('B', 'T'), EmbeddedTextType()),
"token_len": NeuralType(('B'), LengthsType()),
"audio": NeuralType(('B', 'T'), AudioSignal()),
"audio_len": NeuralType(('B'), LengthsType()),
}
else:
return {
"tokens": NeuralType(('B', 'T'), EmbeddedTextType()),
"token_len": NeuralType(('B'), LengthsType()),
"audio": NeuralType(('B', 'T'), AudioSignal(), optional=True),
"audio_len": NeuralType(('B'), LengthsType(), optional=True),
}
@property
def output_types(self):
if not self.calculate_loss and not self.training:
return {
"spec_pred_dec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
"spec_pred_postnet": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
"gate_pred": NeuralType(('B', 'T'), LogitsType()),
"alignments": NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
"pred_length": NeuralType(('B'), LengthsType()),
}
return {
"spec_pred_dec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
"spec_pred_postnet": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
"gate_pred": NeuralType(('B', 'T'), LogitsType()),
"spec_target": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
"spec_target_len": NeuralType(('B'), LengthsType()),
"alignments": NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
}
@typecheck()
def forward(self, *, tokens, token_len, audio=None, audio_len=None):
if audio is not None and audio_len is not None:
spec_target, spec_target_len = self.audio_to_melspec_precessor(audio, audio_len)
else:
if self.training or self.calculate_loss:
raise ValueError(
f"'audio' and 'audio_len' can not be None when either 'self.training' or 'self.calculate_loss' is True."
)
token_embedding = self.text_embedding(tokens).transpose(1, 2)
encoder_embedding = self.encoder(token_embedding=token_embedding, token_len=token_len)
if self.training:
spec_pred_dec, gate_pred, alignments = self.decoder(
memory=encoder_embedding, decoder_inputs=spec_target, memory_lengths=token_len
)
else:
spec_pred_dec, gate_pred, alignments, pred_length = self.decoder(
memory=encoder_embedding, memory_lengths=token_len
)
spec_pred_postnet = self.postnet(mel_spec=spec_pred_dec)
if not self.calculate_loss and not self.training:
return spec_pred_dec, spec_pred_postnet, gate_pred, alignments, pred_length
return spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, alignments
@typecheck(
input_types={"tokens": NeuralType(('B', 'T'), EmbeddedTextType())},
output_types={"spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType())},
)
def generate_spectrogram(self, *, tokens):
self.eval()
self.calculate_loss = False
token_len = torch.tensor([len(i) for i in tokens]).to(self.device)
tensors = self(tokens=tokens, token_len=token_len)
spectrogram_pred = tensors[1]
if spectrogram_pred.shape[0] > 1:
# Silence all frames past the predicted end
mask = ~get_mask_from_lengths(tensors[-1])
mask = mask.expand(spectrogram_pred.shape[1], mask.size(0), mask.size(1))
mask = mask.permute(1, 0, 2)
spectrogram_pred.data.masked_fill_(mask, self.pad_value)
return spectrogram_pred
def training_step(self, batch, batch_idx):
audio, audio_len, tokens, token_len = batch
spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, _ = self.forward(
audio=audio, audio_len=audio_len, tokens=tokens, token_len=token_len
)
loss, _ = self.loss(
spec_pred_dec=spec_pred_dec,
spec_pred_postnet=spec_pred_postnet,
gate_pred=gate_pred,
spec_target=spec_target,
spec_target_len=spec_target_len,
pad_value=self.pad_value,
)
output = {
'loss': loss,
'progress_bar': {'training_loss': loss},
'log': {'loss': loss},
}
return output
def validation_step(self, batch, batch_idx):
audio, audio_len, tokens, token_len = batch
spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, alignments = self.forward(
audio=audio, audio_len=audio_len, tokens=tokens, token_len=token_len
)
loss, gate_target = self.loss(
spec_pred_dec=spec_pred_dec,
spec_pred_postnet=spec_pred_postnet,
gate_pred=gate_pred,
spec_target=spec_target,
spec_target_len=spec_target_len,
pad_value=self.pad_value,
)
loss = {
"val_loss": loss,
"mel_target": spec_target,
"mel_postnet": spec_pred_postnet,
"gate": gate_pred,
"gate_target": gate_target,
"alignments": alignments,
}
self.validation_step_outputs.append(loss)
return loss
def on_validation_epoch_end(self):
if self.logger is not None and self.logger.experiment is not None:
logger = self.logger.experiment
for logger in self.trainer.loggers:
if isinstance(logger, TensorBoardLogger):
logger = logger.experiment
break
if isinstance(logger, TensorBoardLogger):
tacotron2_log_to_tb_func(
logger,
self.validation_step_outputs[0].values(),
self.global_step,
tag="val",
log_images=True,
add_audio=False,
)
elif isinstance(logger, WandbLogger):
tacotron2_log_to_wandb_func(
logger,
self.validation_step_outputs[0].values(),
self.global_step,
tag="val",
log_images=True,
add_audio=False,
)
avg_loss = torch.stack(
[x['val_loss'] for x in self.validation_step_outputs]
).mean() # This reduces across batches, not workers!
self.log('val_loss', avg_loss)
self.validation_step_outputs.clear() # free memory
def _setup_tokenizer(self, cfg):
text_tokenizer_kwargs = {}
if "g2p" in cfg.text_tokenizer and cfg.text_tokenizer.g2p is not None:
# for backward compatibility
if (
self._is_model_being_restored()
and (cfg.text_tokenizer.g2p.get('_target_', None) is not None)
and cfg.text_tokenizer.g2p["_target_"].startswith("nemo_text_processing.g2p")
):
cfg.text_tokenizer.g2p["_target_"] = g2p_backward_compatible_support(
cfg.text_tokenizer.g2p["_target_"]
)
g2p_kwargs = {}
if "phoneme_dict" in cfg.text_tokenizer.g2p:
g2p_kwargs["phoneme_dict"] = self.register_artifact(
'text_tokenizer.g2p.phoneme_dict',
cfg.text_tokenizer.g2p.phoneme_dict,
)
if "heteronyms" in cfg.text_tokenizer.g2p:
g2p_kwargs["heteronyms"] = self.register_artifact(
'text_tokenizer.g2p.heteronyms',
cfg.text_tokenizer.g2p.heteronyms,
)
text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p, **g2p_kwargs)
self.tokenizer = instantiate(cfg.text_tokenizer, **text_tokenizer_kwargs)
def __setup_dataloader_from_config(self, cfg, shuffle_should_be: bool = True, name: str = "train"):
if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
raise ValueError(f"No dataset for {name}")
if "dataloader_params" not in cfg or not isinstance(cfg.dataloader_params, DictConfig):
raise ValueError(f"No dataloder_params for {name}")
if shuffle_should_be:
if 'shuffle' not in cfg.dataloader_params:
logging.warning(
f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
"config. Manually setting to True"
)
with open_dict(cfg.dataloader_params):
cfg.dataloader_params.shuffle = True
elif not cfg.dataloader_params.shuffle:
logging.error(f"The {name} dataloader for {self} has shuffle set to False!!!")
elif not shuffle_should_be and cfg.dataloader_params.shuffle:
logging.error(f"The {name} dataloader for {self} has shuffle set to True!!!")
dataset = instantiate(
cfg.dataset,
text_normalizer=self.normalizer,
text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
text_tokenizer=self.tokenizer,
)
return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)
def setup_training_data(self, cfg):
self._train_dl = self.__setup_dataloader_from_config(cfg)
def setup_validation_data(self, cfg):
self._validation_dl = self.__setup_dataloader_from_config(cfg, shuffle_should_be=False, name="validation")
@classmethod
def list_available_models(cls) -> 'List[PretrainedModelInfo]':
"""
This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
Returns:
List of available pre-trained models.
"""
list_of_models = []
model = PretrainedModelInfo(
pretrained_model_name="tts_en_tacotron2",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_tacotron2/versions/1.10.0/files/tts_en_tacotron2.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz, and can be used to generate female English voices with an American accent.",
class_=cls,
aliases=["Tacotron2-22050Hz"],
)
list_of_models.append(model)
return list_of_models
|