File size: 16,865 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional

import torch
from hydra.utils import instantiate
from lightning.pytorch.loggers import TensorBoardLogger, WandbLogger
from omegaconf import MISSING, DictConfig, OmegaConf, open_dict
from omegaconf.errors import ConfigAttributeError
from torch import nn

from nemo.collections.common.parts.preprocessing import parsers
from nemo.collections.tts.losses.tacotron2loss import Tacotron2Loss
from nemo.collections.tts.models.base import SpectrogramGenerator
from nemo.collections.tts.parts.utils.helpers import (
    g2p_backward_compatible_support,
    get_mask_from_lengths,
    tacotron2_log_to_tb_func,
    tacotron2_log_to_wandb_func,
)
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import (
    AudioSignal,
    EmbeddedTextType,
    LengthsType,
    LogitsType,
    MelSpectrogramType,
    SequenceToSequenceAlignmentType,
)
from nemo.core.neural_types.neural_type import NeuralType
from nemo.utils import logging, model_utils


@dataclass
class Preprocessor:
    _target_: str = MISSING
    pad_value: float = MISSING


@dataclass
class Tacotron2Config:
    preprocessor: Preprocessor = field(default_factory=lambda: Preprocessor())
    encoder: Dict[Any, Any] = MISSING
    decoder: Dict[Any, Any] = MISSING
    postnet: Dict[Any, Any] = MISSING
    labels: List = MISSING
    train_ds: Optional[Dict[Any, Any]] = None
    validation_ds: Optional[Dict[Any, Any]] = None


class Tacotron2Model(SpectrogramGenerator):
    """Tacotron 2 Model that is used to generate mel spectrograms from text"""

    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        # Convert to Hydra 1.0 compatible DictConfig
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)

        # setup normalizer
        self.normalizer = None
        self.text_normalizer_call = None
        self.text_normalizer_call_kwargs = {}
        self._setup_normalizer(cfg)

        # setup tokenizer
        self.tokenizer = None
        if hasattr(cfg, 'text_tokenizer'):
            self._setup_tokenizer(cfg)

            self.num_tokens = len(self.tokenizer.tokens)
            self.tokenizer_pad = self.tokenizer.pad
            self.tokenizer_unk = self.tokenizer.oov
            # assert self.tokenizer is not None
        else:
            self.num_tokens = len(cfg.labels) + 3

        super().__init__(cfg=cfg, trainer=trainer)

        schema = OmegaConf.structured(Tacotron2Config)
        # ModelPT ensures that cfg is a DictConfig, but do this second check in case ModelPT changes
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        elif not isinstance(cfg, DictConfig):
            raise ValueError(f"cfg was type: {type(cfg)}. Expected either a dict or a DictConfig")
        # Ensure passed cfg is compliant with schema
        try:
            OmegaConf.merge(cfg, schema)
            self.pad_value = cfg.preprocessor.pad_value
        except ConfigAttributeError:
            self.pad_value = cfg.preprocessor.params.pad_value
            logging.warning(
                "Your config is using an old NeMo yaml configuration. Please ensure that the yaml matches the "
                "current version in the main branch for future compatibility."
            )

        self._parser = None
        self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
        self.text_embedding = nn.Embedding(self.num_tokens, 512)
        self.encoder = instantiate(self._cfg.encoder)
        self.decoder = instantiate(self._cfg.decoder)
        self.postnet = instantiate(self._cfg.postnet)
        self.loss = Tacotron2Loss()
        self.calculate_loss = True

    @property
    def parser(self):
        if self._parser is not None:
            return self._parser

        ds_class_name = self._cfg.train_ds.dataset._target_.split(".")[-1]
        if ds_class_name == "TTSDataset":
            self._parser = None
        elif hasattr(self._cfg, "labels"):
            self._parser = parsers.make_parser(
                labels=self._cfg.labels,
                name='en',
                unk_id=-1,
                blank_id=-1,
                do_normalize=True,
                abbreviation_version="fastpitch",
                make_table=False,
            )
        else:
            raise ValueError("Wanted to setup parser, but model does not have necessary paramaters")

        return self._parser

    def parse(self, text: str, normalize=True) -> torch.Tensor:
        if self.training:
            logging.warning("parse() is meant to be called in eval mode.")
        if normalize and self.text_normalizer_call is not None:
            text = self.text_normalizer_call(text, **self.text_normalizer_call_kwargs)

        eval_phon_mode = contextlib.nullcontext()
        if hasattr(self.tokenizer, "set_phone_prob"):
            eval_phon_mode = self.tokenizer.set_phone_prob(prob=1.0)

        with eval_phon_mode:
            if self.tokenizer is not None:
                tokens = self.tokenizer.encode(text)
            else:
                tokens = self.parser(text)
                # Old parser doesn't add bos and eos ids, so maunally add it
                tokens = [len(self._cfg.labels)] + tokens + [len(self._cfg.labels) + 1]
        tokens_tensor = torch.tensor(tokens).unsqueeze_(0).to(self.device)
        return tokens_tensor

    @property
    def input_types(self):
        if self.training:
            return {
                "tokens": NeuralType(('B', 'T'), EmbeddedTextType()),
                "token_len": NeuralType(('B'), LengthsType()),
                "audio": NeuralType(('B', 'T'), AudioSignal()),
                "audio_len": NeuralType(('B'), LengthsType()),
            }
        else:
            return {
                "tokens": NeuralType(('B', 'T'), EmbeddedTextType()),
                "token_len": NeuralType(('B'), LengthsType()),
                "audio": NeuralType(('B', 'T'), AudioSignal(), optional=True),
                "audio_len": NeuralType(('B'), LengthsType(), optional=True),
            }

    @property
    def output_types(self):
        if not self.calculate_loss and not self.training:
            return {
                "spec_pred_dec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
                "spec_pred_postnet": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
                "gate_pred": NeuralType(('B', 'T'), LogitsType()),
                "alignments": NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
                "pred_length": NeuralType(('B'), LengthsType()),
            }
        return {
            "spec_pred_dec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
            "spec_pred_postnet": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
            "gate_pred": NeuralType(('B', 'T'), LogitsType()),
            "spec_target": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
            "spec_target_len": NeuralType(('B'), LengthsType()),
            "alignments": NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
        }

    @typecheck()
    def forward(self, *, tokens, token_len, audio=None, audio_len=None):
        if audio is not None and audio_len is not None:
            spec_target, spec_target_len = self.audio_to_melspec_precessor(audio, audio_len)
        else:
            if self.training or self.calculate_loss:
                raise ValueError(
                    f"'audio' and 'audio_len' can not be None when either 'self.training' or 'self.calculate_loss' is True."
                )

        token_embedding = self.text_embedding(tokens).transpose(1, 2)
        encoder_embedding = self.encoder(token_embedding=token_embedding, token_len=token_len)

        if self.training:
            spec_pred_dec, gate_pred, alignments = self.decoder(
                memory=encoder_embedding, decoder_inputs=spec_target, memory_lengths=token_len
            )
        else:
            spec_pred_dec, gate_pred, alignments, pred_length = self.decoder(
                memory=encoder_embedding, memory_lengths=token_len
            )

        spec_pred_postnet = self.postnet(mel_spec=spec_pred_dec)

        if not self.calculate_loss and not self.training:
            return spec_pred_dec, spec_pred_postnet, gate_pred, alignments, pred_length

        return spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, alignments

    @typecheck(
        input_types={"tokens": NeuralType(('B', 'T'), EmbeddedTextType())},
        output_types={"spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType())},
    )
    def generate_spectrogram(self, *, tokens):
        self.eval()
        self.calculate_loss = False
        token_len = torch.tensor([len(i) for i in tokens]).to(self.device)
        tensors = self(tokens=tokens, token_len=token_len)
        spectrogram_pred = tensors[1]

        if spectrogram_pred.shape[0] > 1:
            # Silence all frames past the predicted end
            mask = ~get_mask_from_lengths(tensors[-1])
            mask = mask.expand(spectrogram_pred.shape[1], mask.size(0), mask.size(1))
            mask = mask.permute(1, 0, 2)
            spectrogram_pred.data.masked_fill_(mask, self.pad_value)

        return spectrogram_pred

    def training_step(self, batch, batch_idx):
        audio, audio_len, tokens, token_len = batch
        spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, _ = self.forward(
            audio=audio, audio_len=audio_len, tokens=tokens, token_len=token_len
        )

        loss, _ = self.loss(
            spec_pred_dec=spec_pred_dec,
            spec_pred_postnet=spec_pred_postnet,
            gate_pred=gate_pred,
            spec_target=spec_target,
            spec_target_len=spec_target_len,
            pad_value=self.pad_value,
        )

        output = {
            'loss': loss,
            'progress_bar': {'training_loss': loss},
            'log': {'loss': loss},
        }
        return output

    def validation_step(self, batch, batch_idx):
        audio, audio_len, tokens, token_len = batch
        spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, alignments = self.forward(
            audio=audio, audio_len=audio_len, tokens=tokens, token_len=token_len
        )

        loss, gate_target = self.loss(
            spec_pred_dec=spec_pred_dec,
            spec_pred_postnet=spec_pred_postnet,
            gate_pred=gate_pred,
            spec_target=spec_target,
            spec_target_len=spec_target_len,
            pad_value=self.pad_value,
        )
        loss = {
            "val_loss": loss,
            "mel_target": spec_target,
            "mel_postnet": spec_pred_postnet,
            "gate": gate_pred,
            "gate_target": gate_target,
            "alignments": alignments,
        }
        self.validation_step_outputs.append(loss)
        return loss

    def on_validation_epoch_end(self):
        if self.logger is not None and self.logger.experiment is not None:
            logger = self.logger.experiment
            for logger in self.trainer.loggers:
                if isinstance(logger, TensorBoardLogger):
                    logger = logger.experiment
                    break
            if isinstance(logger, TensorBoardLogger):
                tacotron2_log_to_tb_func(
                    logger,
                    self.validation_step_outputs[0].values(),
                    self.global_step,
                    tag="val",
                    log_images=True,
                    add_audio=False,
                )
            elif isinstance(logger, WandbLogger):
                tacotron2_log_to_wandb_func(
                    logger,
                    self.validation_step_outputs[0].values(),
                    self.global_step,
                    tag="val",
                    log_images=True,
                    add_audio=False,
                )
        avg_loss = torch.stack(
            [x['val_loss'] for x in self.validation_step_outputs]
        ).mean()  # This reduces across batches, not workers!
        self.log('val_loss', avg_loss)
        self.validation_step_outputs.clear()  # free memory

    def _setup_tokenizer(self, cfg):
        text_tokenizer_kwargs = {}
        if "g2p" in cfg.text_tokenizer and cfg.text_tokenizer.g2p is not None:
            # for backward compatibility
            if (
                self._is_model_being_restored()
                and (cfg.text_tokenizer.g2p.get('_target_', None) is not None)
                and cfg.text_tokenizer.g2p["_target_"].startswith("nemo_text_processing.g2p")
            ):
                cfg.text_tokenizer.g2p["_target_"] = g2p_backward_compatible_support(
                    cfg.text_tokenizer.g2p["_target_"]
                )

            g2p_kwargs = {}

            if "phoneme_dict" in cfg.text_tokenizer.g2p:
                g2p_kwargs["phoneme_dict"] = self.register_artifact(
                    'text_tokenizer.g2p.phoneme_dict',
                    cfg.text_tokenizer.g2p.phoneme_dict,
                )

            if "heteronyms" in cfg.text_tokenizer.g2p:
                g2p_kwargs["heteronyms"] = self.register_artifact(
                    'text_tokenizer.g2p.heteronyms',
                    cfg.text_tokenizer.g2p.heteronyms,
                )

            text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p, **g2p_kwargs)

        self.tokenizer = instantiate(cfg.text_tokenizer, **text_tokenizer_kwargs)

    def __setup_dataloader_from_config(self, cfg, shuffle_should_be: bool = True, name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True"
                )
                with open_dict(cfg.dataloader_params):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(f"The {name} dataloader for {self} has shuffle set to False!!!")
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(
            cfg.dataset,
            text_normalizer=self.normalizer,
            text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
            text_tokenizer=self.tokenizer,
        )

        return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(cfg, shuffle_should_be=False, name="validation")

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_tacotron2",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_tacotron2/versions/1.10.0/files/tts_en_tacotron2.nemo",
            description="This model is trained on LJSpeech sampled at 22050Hz, and can be used to generate female English voices with an American accent.",
            class_=cls,
            aliases=["Tacotron2-22050Hz"],
        )
        list_of_models.append(model)
        return list_of_models