Spaces:
Runtime error
Runtime error
File size: 49,462 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import warnings
from copy import deepcopy
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
import lightning.pytorch as pl
import nemo_run as run
import torch
from megatron.core import parallel_state
from rich.console import Console
from torch.distributed import all_gather_object
from typing_extensions import Annotated
import nemo.lightning as nl
from nemo.collections.llm import GPTModel
from nemo.collections.llm.gpt.data.fine_tuning import FineTuningDataModule
from nemo.collections.llm.modelopt import (
DistillationGPTModel,
ExportConfig,
PruningConfig,
QuantizationConfig,
Quantizer,
prune_language_model,
save_pruned_model,
set_modelopt_spec_if_exists_in_ckpt,
setup_trainer_and_restore_model_with_modelopt_spec,
)
from nemo.lightning import (
AutoResume,
NeMoLogger,
OptimizerModule,
Trainer,
configure_no_restart_validation_training_loop,
io,
)
from nemo.lightning.base import NEMO_MODELS_CACHE
from nemo.lightning.callback_group import CallbackGroup
from nemo.lightning.ckpt_utils import ckpt_to_context_subdir
from nemo.lightning.pytorch.callbacks import PEFT, JitTransform, ModelTransform
from nemo.utils import logging
from nemo.utils.get_rank import is_global_rank_zero
if TYPE_CHECKING:
from megatron.core.inference.common_inference_params import CommonInferenceParams
from megatron.core.inference.inference_request import InferenceRequest
TokenizerType = Any
AnyPath = Union[Path, str]
@run.cli.entrypoint(namespace="llm")
def train(
model: Union[pl.LightningModule, AnyPath],
data: pl.LightningDataModule,
trainer: Trainer,
log: Annotated[Optional[NeMoLogger], run.Config[NeMoLogger]] = None,
resume: Annotated[Optional[AutoResume], run.Config[AutoResume]] = None,
optim: Optional[OptimizerModule] = None,
tokenizer: Optional[TokenizerType] = None,
model_transform: Optional[Union[PEFT, ModelTransform, Callable]] = None,
# TODO: Fix export export: Optional[str] = None,
) -> Path:
"""
Trains a model using the specified data and trainer, with optional tokenizer, source, and export.
Args:
model (Union[pl.LightningModule, AnyPath]): The model to be trained or a path to the NeMo 2 checkpoint.
data (pl.LightningDataModule): The data module containing training data.
trainer (Trainer): The trainer instance configured with a MegatronStrategy.
log (NeMoLogger): A nemologger instance.
resume (Optional[Union[AutoResume, Resume]]): Resume training from a checkpoint.
optim (Optional[OptimizerModule]): The optimizer module to be used. If not provided, the default optimizer
from the model will be used.
tokenizer (Optional[TokenizerType]): Tokenizer setting to be applied. Can be 'data' or 'model'
or an instance of TokenizerSpec.
export (Optional[str]): Filename to save the exported checkpoint after training.
model_transform (Optional[Union[Callable[[nn.Module], nn.Module], PEFT]]): A model transform to be applied.
Returns
-------
Path: The directory path where training artifacts are saved.
Examples
--------
>>> from nemo.collections import llm
>>> from nemo import lightning as nl
>>> model = llm.MistralModel()
>>> data = llm.SquadDataModule(seq_length=4096, global_batch_size=16, micro_batch_size=2)
>>> precision = nl.MegatronMixedPrecision(precision="bf16-mixed")
>>> trainer = nl.Trainer(strategy=nl.MegatronStrategy(tensor_model_parallel_size=2), plugins=precision)
>>> llm.train(model, data, trainer, tokenizer="data")
PosixPath('/path/to/log_dir')
"""
model = _load_model_from_path(model)
# [ModelOpt]: If modelopt_state exists, overwrite transformer_layer_spec to modelopt spec
if resume:
if resume.restore_config and resume.restore_config.path:
set_modelopt_spec_if_exists_in_ckpt(model, resume.restore_config.path)
elif resume.resume_from_path:
set_modelopt_spec_if_exists_in_ckpt(model, resume.resume_from_path)
app_state = _setup(
model=model,
data=data,
trainer=trainer,
log=log,
resume=resume,
optim=optim,
tokenizer=tokenizer,
model_transform=model_transform,
)
trainer.fit(model, data)
return app_state.exp_dir
@run.cli.entrypoint(namespace="llm")
def pretrain(
model: Union[pl.LightningModule, AnyPath],
data: pl.LightningDataModule,
trainer: Trainer,
log: Annotated[Optional[NeMoLogger], run.Config[NeMoLogger]] = None,
resume: Annotated[Optional[AutoResume], run.Config[AutoResume]] = None,
optim: Optional[OptimizerModule] = None,
) -> Path:
"""
Pretrains a model using the specified data and trainer, with optional logging, resuming, and optimization.
This function is a wrapper around the `train` function, specifically configured for pretraining tasks.
Note, by default it will use the tokenizer from the model.
Args:
model (Union[pl.LightningModule, AnyPath]): The model to be pretrained or a path to the NeMo 2 checkpoint.
data (pl.LightningDataModule): The data module containing pretraining data.
trainer (Trainer): The trainer instance configured with a MegatronStrategy.
log (NeMoLogger): A nemologger instance.
resume (Optional[AutoResume]): Resume training from a checkpoint.
optim (Optional[OptimizerModule]): The optimizer module to be used. If not provided, the default
optimizer from the model will be used.
Returns:
Path: The directory path where pretraining artifacts are saved.
Examples:
>>> from nemo.collections import llm
>>> from nemo import lightning as nl
>>> model = llm.MistralModel()
>>> data = llm.PretrainingDataModule(paths=[...], seq_length=4096, global_batch_size=16, micro_batch_size=2)
>>> precision = nl.MegatronMixedPrecision(precision="bf16-mixed")
>>> trainer = nl.Trainer(strategy=nl.MegatronStrategy(tensor_model_parallel_size=2), plugins=precision)
>>> llm.pretrain(model, data, trainer)
PosixPath('/path/to/log_dir')
"""
model = _load_model_from_path(model)
_validate_config(model, data, trainer, log=log, resume=resume, optim=optim)
return train(
model=model,
data=data,
trainer=trainer,
log=log,
resume=resume,
optim=optim,
tokenizer="data",
)
@run.cli.entrypoint(namespace="llm")
def finetune(
model: Union[pl.LightningModule, AnyPath],
data: pl.LightningDataModule,
trainer: Trainer,
log: Annotated[Optional[NeMoLogger], run.Config[NeMoLogger]] = None,
resume: Annotated[Optional[AutoResume], run.Config[AutoResume]] = None,
optim: Optional[OptimizerModule] = None,
peft: Optional[Union[PEFT, ModelTransform, Callable]] = None,
tokenizer: Optional[TokenizerType] = "model",
) -> Path:
"""
Finetunes a model using the specified data and trainer, with optional logging, resuming, and PEFT.
Note, by default it will use the tokenizer from the model.
Args:
model (Union[pl.LightningModule, AnyPath]): The model to be finetuned.
data (pl.LightningDataModule): The data module containing finetuning data.
trainer (Trainer): The trainer instance configured with a MegatronStrategy.
log (NeMoLogger): A nemologger instance.
resume (Optional[AutoResume]): Resume training from a checkpoint.
optim (Optional[OptimizerModule]): The optimizer module to be used. If not provided, the default
optimizer from the model will be used.
peft (Optional[PEFT]): A PEFT (Parameter-Efficient Fine-Tuning) configuration to be applied.
tokenizer (Optional[TokenizerType]): Tokenizer setting to be applied. Can be 'data' or 'model'
or an instance of TokenizerSpec. If 'data' uses the data loader's tokenizer instead of the tokenizer
from the model checkpoint, which is useful for expanding vocabulary or adding special tokens
(such as chat template tokens).
Returns:
Path: The directory path where finetuning artifacts are saved.
Examples:
>>> from nemo.collections import llm
>>> from nemo import lightning as nl
>>> model = llm.MistralModel()
>>> data = llm.SquadDataModule(seq_length=4096, global_batch_size=16, micro_batch_size=2)
>>> precision = nl.MegatronMixedPrecision(precision="bf16-mixed")
>>> trainer = nl.Trainer(strategy=nl.MegatronStrategy(tensor_model_parallel_size=2), plugins=precision)
>>> llm.finetune(model, data, trainer, peft=llm.peft.LoRA()])
PosixPath('/path/to/log_dir')
"""
model = _load_model_from_path(model)
_validate_config(model, data, trainer, log=log, resume=resume, optim=optim, model_transform=peft)
return train(
model=model,
data=data,
trainer=trainer,
log=log,
resume=resume,
optim=optim,
tokenizer=tokenizer,
model_transform=peft,
)
@run.cli.entrypoint(namespace="llm")
def validate(
model: pl.LightningModule,
data: pl.LightningDataModule,
trainer: Trainer,
log: Annotated[Optional[NeMoLogger], run.Config[NeMoLogger]] = None,
resume: Annotated[Optional[AutoResume], run.Config[AutoResume]] = None,
optim: Optional[OptimizerModule] = None,
tokenizer: Optional[TokenizerType] = None,
model_transform: Optional[Union[PEFT, ModelTransform, Callable]] = None,
) -> Path:
"""
Validates a model using the specified data and trainer, with optional logging, resuming, and model transformations.
Args:
model (pl.LightningModule): The model to be validated.
data (pl.LightningDataModule): The data module containing validation data.
trainer (Trainer): The trainer instance configured with a MegatronStrategy.
log (NeMoLogger): A nemologger instance.
resume (Optional[AutoResume]): Resume from a checkpoint for validation.
optim (Optional[OptimizerModule]): The optimizer module to be used. If not provided, the default optimizer
from the model will be used.
tokenizer (Optional[TokenizerType]): Tokenizer setting to be applied. Can be 'data' or 'model'
or an instance of TokenizerSpec.
model_transform (Optional[Union[Callable[[nn.Module], nn.Module], PEFT]]): A model transform to be applied.
Returns:
Path: The directory path where validation artifacts are saved.
Examples:
>>> from nemo.collections import llm
>>> from nemo import lightning as nl
>>> model = llm.MistralModel()
>>> data = llm.SquadDataModule(seq_length=4096, global_batch_size=16, micro_batch_size=2)
>>> precision = nl.MegatronMixedPrecision(precision="bf16-mixed")
>>> trainer = nl.Trainer(strategy=nl.MegatronStrategy(tensor_model_parallel_size=2), plugins=precision)
>>> llm.validate(model, data, trainer, tokenizer="data")
PosixPath('/path/to/log_dir')
"""
app_state = _setup(
model=model,
data=data,
trainer=trainer,
log=log,
resume=resume,
optim=optim,
tokenizer=tokenizer,
model_transform=model_transform,
)
trainer.validate(model, data)
return app_state.exp_dir
@run.cli.entrypoint(name="prune", namespace="llm")
def prune(
nemo_checkpoint: str,
save_path: str,
pruning_config: PruningConfig,
devices: int = 1,
num_nodes: int = 1,
tp_size: int = 1,
pp_size: int = 1,
num_layers_in_first_pipeline_stage: int | None = None,
num_layers_in_last_pipeline_stage: int | None = None,
num_train_samples: int = 1024,
data: pl.LightningDataModule | None = None,
tokenizer_path: str | None = None,
legacy_ckpt: bool = False,
) -> str:
"""
Prunes a model using the specified data and trainer. Currently only supports GPT models.
Args:
nemo_checkpoint (str): The path to the NeMo checkpoint to be pruned.
save_path (str): The path to save the pruned NeMo checkpoint.
pruning_config (PruningConfig): The pruning configuration.
devices (int): The number of devices to use for pruning.
num_nodes (int): The number of nodes to use for pruning.
tp_size (int): The tensor parallel size.
pp_size (int): The pipeline parallel size.
num_train_samples (int): Number of training samples for importance estimation using forward pass.
num_layers_in_first_pipeline_stage (int): The number of layers in the first pipeline stage.
num_layers_in_last_pipeline_stage (int): The number of layers in the last pipeline stage.
data (pl.LightningDataModule): The data module for forward pass.
Required if not dropping layers.
tokenizer_path (str): Path to the tokenizer if not using model's tokenizer.
legacy_ckpt (bool): If True, allow loading ckpt saved with older version of TE.
Use for cases like missing state dict keys ending with `_extra_state`.
Returns:
str: The path to the pruned NeMo checkpoint.
Examples:
>>> from nemo.collections import llm
>>> from nemo.collections.llm.modelopt.prune import PruningConfig
>>> data = llm.PretrainingDataModule(
paths=["1.0", "path/to/tokenized/data"],
seq_length=256,
global_batch_size=1,
micro_batch_size=1,
)
>>> llm.prune(
nemo_checkpoint="path/to/llama3.1-8b",
save_path="path/to/pruned_llama_model",
pruning_config=PruningConfig(target_ffn_hidden_size=9216, target_hidden_size=3072),
data=data
)
"""
if data is not None:
assert data.global_batch_size == data.micro_batch_size, "Global batch size must be equal to micro batch size"
steps = num_train_samples // data.global_batch_size
else:
steps = num_train_samples
model, trainer = setup_trainer_and_restore_model_with_modelopt_spec(
model_path=nemo_checkpoint,
tensor_model_parallel_size=tp_size,
pipeline_model_parallel_size=pp_size,
num_layers_in_first_pipeline_stage=num_layers_in_first_pipeline_stage,
num_layers_in_last_pipeline_stage=num_layers_in_last_pipeline_stage,
devices=devices,
num_nodes=num_nodes,
inference_only=True,
tokenizer_path=tokenizer_path,
legacy_ckpt=legacy_ckpt,
strategy_kwargs={"sequence_parallel": False, "replace_progress_bar": False},
trainer_kwargs={"max_steps": steps, "limit_val_batches": steps, "val_check_interval": steps},
model_config_overrides={"sequence_parallel": False},
)
prune_language_model(model, pruning_config, data, trainer)
save_pruned_model(trainer, save_path)
console = Console()
console.print(f"[green]✓ Pruning succeded, pruned checkpoint saved to {save_path}[/green]")
return save_path
@run.cli.entrypoint(name="distill", namespace="llm")
def distill(
student_model_path: AnyPath,
teacher_model_path: AnyPath,
data: pl.LightningDataModule,
trainer: Trainer,
distillation_config_path: Optional[AnyPath] = None,
log: Annotated[Optional[NeMoLogger], run.Config[NeMoLogger]] = None,
resume: Annotated[Optional[AutoResume], run.Config[AutoResume]] = None,
optim: Optional[OptimizerModule] = None,
tokenizer: Optional[TokenizerType] = None,
model_transform: Optional[Union[PEFT, ModelTransform, Callable]] = None,
) -> Path:
"""
Distills a teacher model into a student model using special Knowledge-Distillation losses.
Note that this requires an existing NeMo 2.0 checkpoint of the student model as well, as
the model class is not known beforehand.
This script currently supports instances of ``nemo.collections.llm.GPTModel`` for now.
Args:
student_model_path (Path): Path to student model NeMo checkpoint to be trained.
teacher_model_path (Path): Path to teacher model NeMo checkpoint to distill from.
data (pl.LightningDataModule): The data module containing training data.
trainer (Trainer): The trainer instance configured with a MegatronStrategy.
distillation_config_path (Optional[Path]): Path to distillation config YAML file.
If not provided, by default will perform logits-only distillation.
log (NeMoLogger): A nemologger instance.
resume (Optional[Union[AutoResume, Resume]]): Resume training from a checkpoint.
optim (Optional[OptimizerModule]): The optimizer module to be used. If not provided, the default optimizer
from the model will be used.
tokenizer (Optional[TokenizerType]): Tokenizer setting to be applied. Can be 'data' or 'model'
or an instance of TokenizerSpec.
export (Optional[str]): Filename to save the exported checkpoint after training.
model_transform (Optional[Union[Callable[[nn.Module], nn.Module], PEFT]]): A model transform to be applied.
Returns
-------
Path: The directory path where training artifacts are saved.
Examples
--------
>>> from nemo.collections import llm
>>> from nemo import lightning as nl
>>> student = "/path/to/student/nemo/ckpt" # <-- change me
>>> teacher = "/path/to/teacher/nemo/ckpt" # <-- change me
>>> data = llm.SquadDataModule(seq_length=4096, global_batch_size=16, micro_batch_size=2)
>>> precision = nl.MegatronMixedPrecision(precision="bf16-mixed")
>>> trainer = nl.Trainer(strategy=nl.MegatronStrategy(tensor_model_parallel_size=2), plugins=precision)
>>> llm.distill(student, teacher, data, trainer, tokenizer="model")
PosixPath('/path/to/log_dir')
"""
_student_model = io.load_context(ckpt_to_context_subdir(student_model_path), subpath="model")
_teacher_model = io.load_context(ckpt_to_context_subdir(teacher_model_path), subpath="model")
assert isinstance(_student_model, GPTModel), "Only models based on `llm.GPTModel` are supported currently."
assert isinstance(_teacher_model, GPTModel), "Only models based on `llm.GPTModel` are supported currently."
if tokenizer is None:
tokenizer = getattr(_student_model, "tokenizer", None) or getattr(_teacher_model, "tokenizer", None)
assert tokenizer is not None, "Tokenizer neither provided nor found in models."
model = DistillationGPTModel(
_student_model.config,
_teacher_model.config,
teacher_ckpt_path=teacher_model_path,
distillation_config_path=distillation_config_path,
)
model.__io__ = _student_model.__io__
if resume is None:
resume = AutoResume()
if resume.restore_config is None:
resume.restore_config = nl.RestoreConfig(path=student_model_path)
return train(
model=model,
data=data,
optim=optim,
tokenizer=tokenizer,
trainer=trainer,
log=log,
resume=resume,
model_transform=model_transform,
)
@run.cli.entrypoint(name="ptq", namespace="llm")
def ptq(
model_path: str,
export_config: ExportConfig,
calibration_tp: int = 1,
calibration_pp: int = 1,
calibration_ep: int = 1,
num_layers_in_first_pipeline_stage: int | None = None,
num_layers_in_last_pipeline_stage: int | None = None,
devices: int | None = None,
num_nodes: int | None = None,
quantization_config: Annotated[Optional[QuantizationConfig], run.Config[QuantizationConfig]] = None,
forward_loop: Callable | None = None,
tokenizer_path: str | None = None,
legacy_ckpt: bool = False,
trust_remote_code: bool = False,
) -> Path:
"""
Applies Post-Training Quantization (PTQ) for a model using the specified quantization and export configs. It runs
calibration for a small dataset to collect scaling factors low-precision GEMMs used by desired quantization method.
By default, this function produces TensorRT-LLM checkpoint ready for deployment using the Export-Deploy repository
(https://github.com/NVIDIA-NeMo/Export-Deploy) or directly using TensorRT-LLM library.
The function can be used through the NeMo CLI in the following way:
```bash
# Run calibration using tensor parallel set to 8 and export quantized checkpoint with tensor parallel equal 2
nemo llm ptq run.executor=torchrun run.executor.ntasks_per_node=8 \
model_path=/models/Llama-3-70B \
export_config.path=/models/Llama-3-70B-FP8 \
calibration_tp=8 \
export_config.inference_tp=2
# Choose different quantization method, for example, INT8 SmoothQuant
nemo llm ptq run.executor=torchrun run.executor.ntasks_per_node=1 \
model_path=/models/Llama-3-8B \
export_config.path=/models/Llama-3-8B-INT8_SQ \
quantization_config.algorithm=int8_sq
# Export as NeMo checkpoint instead
nemo llm ptq run.executor=torchrun \
model_path=/models/Llama-3-8B \
export_config.path=/models/Llama-3-8B-INT8_SQ \
quantization_config.algorithm=int8_sq \
export_config.export_format=nemo
# Quantize HF AutoModel checkpoint.
nemo llm ptq run.executor=torchrun run.executor.ntasks_per_node=1 \
model_path=/models/Llama-3-70B-HF \
export_config.path=/models/Llama-3-70B-HF-FP8 \
export_config.export_format=hf
```
Args:
model_path (str): The path to model to be quantized.
calibration_tp (int): Calibration tensor parallelism.
calibration_pp (int): Calibration pipeline parallelism.
num_layers_in_first_pipeline_stage (int): Number of layers in the first pipeline stage.
num_layers_in_last_pipeline_stage (int): Number of layers in the last pipeline stage.
export_config (ExportConfig): Export configuration for output checkpoint.
devices (int): Number of devices to use for calibration. Default: calibration_tp.
num_nodes (int): Number of nodes to use for calibration. Default: calibration_pp.
quantization_config (QuantizationConfig): Configuration for quantization algorithm.
forward_loop (Callable): Forward loop to use for calibration.
If not provided, a forward loop will be created using the calibration dataset.
tokenizer_path (str): Path to the tokenizer if not using model's tokenizer.
legacy_ckpt (bool): If True, allow loading ckpt saved with older version of TE.
trust_remote_code (bool): Trust remote code when loading HuggingFace models.
Returns:
Path: The path where the quantized checkpoint has been saved after calibration.
"""
if not quantization_config:
quantization_config = QuantizationConfig()
if devices is None:
devices = calibration_tp
if num_nodes is None:
num_nodes = calibration_pp
quantizer = Quantizer(quantization_config, export_config)
assert Path(model_path).exists(), f"Path {model_path} does not exist"
trainer = None
model, trainer = setup_trainer_and_restore_model_with_modelopt_spec(
model_path=model_path,
tensor_model_parallel_size=calibration_tp,
pipeline_model_parallel_size=calibration_pp,
num_layers_in_first_pipeline_stage=num_layers_in_first_pipeline_stage,
num_layers_in_last_pipeline_stage=num_layers_in_last_pipeline_stage,
expert_model_parallel_size=calibration_ep,
devices=devices,
num_nodes=num_nodes,
inference_only=True,
tokenizer_path=tokenizer_path,
legacy_ckpt=legacy_ckpt,
strategy_kwargs={"sequence_parallel": False, "lazy_init": True},
trainer_kwargs={},
model_config_overrides={"sequence_parallel": False},
)
model = quantizer.quantize(model, forward_loop)
quantizer.export(model, model_path, trainer)
if is_global_rank_zero():
console = Console()
console.print(f"[green]✓ PTQ succeded, quantized checkpoint exported to {export_config.path}[/green]")
return export_config.path
@run.cli.entrypoint(name="import", namespace="llm")
def import_ckpt(
model: pl.LightningModule,
source: str,
output_path: Optional[AnyPath] = None,
overwrite: bool = False,
**kwargs,
) -> Path:
"""
Imports a checkpoint into a model using the model's associated importer, typically for
the purpose of fine-tuning a community model trained in an external framework, such as
Hugging Face.
This function can be used both programmatically and through the NeMo CLI:
CLI Usage:
```bash
# Import Llama 3 8B from HuggingFace (saves to $NEMO_MODELS_CACHE)
nemo llm import model=llama3_8b source="hf://meta-llama/Llama-3.1-8B"
# Import with custom output path
nemo llm import model=llama3_8b source="hf://meta-llama/Llama-3.1-8B" output_path="/path/to/save"
# Force overwrite existing checkpoint
nemo llm import model=llama3_8b source="hf://meta-llama/Llama-3.1-8B" overwrite=true
```
Python Usage:
```python
model = Mistral7BModel()
imported_path = import_ckpt(model, "hf://mistralai/Mistral-7B-v0.1")
```
The importer component of the model reads the checkpoint data from the specified source
and transforms it into the right format. This is particularly useful for adapting
models that have been pre-trained in different environments or frameworks to be fine-tuned
or further developed within the current system.
For instance, using `import_ckpt(Mistral7BModel(), "hf")` initiates the import process
by searching for a registered model importer tagged with "hf". In NeMo, `HFMistral7BImporter`
is registered under this tag via:
`@io.model_importer(Mistral7BModel, "hf", default_path="mistralai/Mistral-7B-v0.1")`.
This links `Mistral7BModel` to `HFMistral7BImporter`, designed for HuggingFace checkpoints.
Args:
model (pl.LightningModule): The model into which the checkpoint will be imported.
This model must implement the ConnectorMixin.
source (str): The source from which the checkpoint will be imported. This can be
a file path, URL, or any other string identifier that the model's importer
can recognize.
output_path (Optional[Path]): The path where the imported checkpoint will be stored.
If not specified, the checkpoint will be saved to $NEMO_MODELS_CACHE
(defaults to ~/.cache/nemo/models/ if the environment variable is not set).
overwrite (bool): If set to True, existing files at the output path will be overwritten.
This is useful for model updates where retaining old checkpoint files is not required.
Returns:
Path: The path where the checkpoint has been saved after import.
Raises:
ValueError: If the model does not implement ConnectorMixin, indicating a lack of
necessary importer functionality.
FileExistsError: If the output path is provided (that is, when not using models cache)
and it exists and overwrite is not set to True.
"""
if output_path:
output_path = Path(output_path)
if output_path.exists() and not overwrite:
raise FileExistsError(f"Output path {output_path} exists. Use overwrite=True to force overwrite.")
output = io.import_ckpt(model=model, source=source, output_path=output_path, overwrite=overwrite, **kwargs)
console = Console()
if output_path:
console.print(f"[green]✓ Checkpoint imported to {output}[/green]")
else:
console.print(f"[green] $NEMO_MODELS_CACHE={NEMO_MODELS_CACHE} [/green]")
# Display directory structure as a tree
dir_tree = _build_directory_tree(output, root_name="Imported Checkpoint")
console.print(dir_tree)
return output
def load_connector_from_trainer_ckpt(path: AnyPath, target: str) -> io.ModelConnector:
# pylint: disable=C0116
if not isinstance(path, Path):
path = Path(path)
return io.load_context(path, subpath="model").exporter(target, path)
@run.cli.entrypoint(name="export", namespace="llm")
def export_ckpt(
path: AnyPath,
target: str,
output_path: Optional[AnyPath] = None,
overwrite: bool = False,
load_connector: Callable[[Path, str], io.ModelConnector] = load_connector_from_trainer_ckpt,
modelopt_export_kwargs: dict[str, Any] = None,
**kwargs,
) -> Path:
"""
Exports a checkpoint from a model using the model's associated exporter, typically for
the purpose of sharing a model that has been fine-tuned or customized within NeMo.
This function can be used both programmatically and through the NeMo CLI:
CLI Usage:
```bash
# Export model to HuggingFace format (saves to {checkpoint_path}/hf/)
nemo llm export path=/path/to/model.nemo target="hf"
# Export with custom output path
nemo llm export path=/path/to/model.nemo target="hf" output_path="/path/to/save"
# Force overwrite existing export
nemo llm export path=/path/to/model.nemo target="hf" overwrite=true
```
Python Usage:
```python
nemo_ckpt_path = Path("/path/to/model.nemo")
export_path = export_ckpt(nemo_ckpt_path, "hf")
```
The exporter component of the model reads the model's state from the specified path and
exports it into the format specified by the 'target' identifier. This is particularly
useful for adapting models that have been developed or fine-tuned within NeMo to be
compatible with other environments or frameworks.
Args:
path (Path): The path to the model's checkpoint file from which data will be exported.
target (str): The identifier for the exporter that defines the format of the export
(e.g., "hf" for HuggingFace format).
output_path (Optional[Path]): The path where the exported checkpoint will be saved.
If not specified, defaults to {checkpoint_path}/{target}/.
overwrite (bool): If set to True, existing files at the output path will be overwritten.
This is useful for model updates where retaining old checkpoint files is not required.
load_connector (Callable[[Path, str], ModelConnector]): A function to load the appropriate
exporter based on the model and target format. Defaults to `load_connector_from_trainer_ckpt`.
modelopt_export_kwargs (Dict[str, Any]): Additional keyword arguments for ModelOpt export to HuggingFace.
Returns:
Path: The path where the checkpoint has been saved after export.
Raises:
ValueError: If the model does not implement ConnectorMixin, indicating a lack of
necessary exporter functionality.
FileExistsError: If the output path is provided (that is, when not using models cache)
and it exists and overwrite is not set to True.
"""
if not isinstance(path, Path):
path = Path(path)
if output_path and not isinstance(output_path, Path):
output_path = Path(output_path)
if output_path.exists() and not overwrite:
raise FileExistsError(f"Output path {output_path} exists. Use overwrite=True to force overwrite.")
output = io.export_ckpt(path, target, output_path, overwrite, load_connector, modelopt_export_kwargs, **kwargs)
console = Console()
console.print(f"[green]✓ Checkpoint exported to {output}[/green]")
return output
@run.cli.entrypoint(name="generate", namespace="llm")
def generate(
path: AnyPath,
trainer: nl.Trainer,
prompts: Optional[list[str]] = None,
encoder_prompts: Optional[list[str]] = None,
input_dataset: Optional[Union[pl.LightningDataModule, str]] = None,
params_dtype: torch.dtype = torch.bfloat16,
add_BOS: bool = False,
max_batch_size: int = 4,
random_seed: Optional[int] = None,
inference_batch_times_seqlen_threshold: int = 1000,
inference_params: Optional["CommonInferenceParams"] = None,
text_only: bool = False,
output_path: Optional[AnyPath] = None,
enable_flash_decode: bool = True,
**kwargs,
) -> list[Union["InferenceRequest", str]]:
"""
Generates text using a NeMo LLM model.
This function takes a checkpoint path and a list of prompts,
and generates text based on the loaded model and parameters.
It returns a list of generated text, either as a string or as an InferenceRequest object.
Python Usage:
```python
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=2,
pipeline_model_parallel_size=1,
context_parallel_size=1,
sequence_parallel=False,
setup_optimizers=False,
store_optimizer_states=False,
)
trainer = nl.Trainer(
accelerator="gpu",
devices=2,
num_nodes=1,
strategy=strategy,
plugins=nl.MegatronMixedPrecision(
precision="bf16-mixed",
params_dtype=torch.bfloat16,
pipeline_dtype=torch.bfloat16,
autocast_enabled=False,
grad_reduce_in_fp32=False,
),
)
prompts = [
"Hello, how are you?",
"How many r's are in the word 'strawberry'?",
"Which number is bigger? 10.119 or 10.19?",
]
if __name__ == "__main__":
results = api.generate(
path=os.path.join(os.environ["NEMO_HOME"], "models", "meta-llama/Meta-Llama-3-8B"),
prompts=prompts,
trainer=trainer,
inference_params=CommonInferenceParams(temperature=0.1, top_k=10, num_tokens_to_generate=512),
text_only=True,
)
```
Args:
path (Union[Path, str]): The path to the model checkpoint.
prompts (list[str]): The list of prompts to generate text for.
trainer (nl.Trainer): The trainer object.
encoder_prompts (Optional[list[str]], optional): The list of encoder prompts. Defaults to None.
input_dataset (Optional[Union[pl.LightningDataModule, str]], optional): The input data module or jsonl file.
Test set will be used for generation for data modules. Defaults to None.
params_dtype (torch.dtype, optional): The data type of the model parameters. Defaults to torch.bfloat16.
add_BOS (bool, optional): Whether to add the beginning of sequence token. Defaults to False.
max_batch_size (int, optional): The maximum batch size. Defaults to 4.
random_seed (Optional[int], optional): The random seed. Defaults to None.
inference_batch_times_seqlen_threshold (int, optional): If batch-size times sequence-length is smaller than
this threshold then we will not use pipelining, otherwise we will. Defaults to 1000.
inference_params (Optional["CommonInferenceParams"], optional): The inference parameters defined in
Mcore's CommonInferenceParams. Defaults to None.
text_only (bool, optional): Whether to return only the generated text as a string. Defaults to False.
output_path (Optional[Union[Path, str]], optional): The path to save the generated text or test dataset
predictions. Defaults to None.
enable_flash_decode (bool, optional): Whether to enable flash decode. Defaults to True.
**kwargs: Additional keyword arguments passed to setup_model_and_tokenizer.
Returns:
list[Union["InferenceRequest", str]]: A list of generated text,
either as a string or as an InferenceRequest object.
"""
from nemo.collections.llm import inference
if input_dataset is not None:
input_path = input_dataset if isinstance(input_dataset, str) else input_dataset.test_path
with open(input_path) as f:
dataset = [json.loads(sample) for sample in f.readlines()]
inputs = [sample["input"] for sample in dataset]
elif prompts is not None:
inputs = prompts
else:
raise ValueError("Either prompts or input_dataset must be provided.")
inference_wrapped_model, mcore_tokenizer = inference.setup_model_and_tokenizer(
path=path,
trainer=trainer,
params_dtype=params_dtype,
inference_batch_times_seqlen_threshold=inference_batch_times_seqlen_threshold,
enable_flash_decode=enable_flash_decode,
**kwargs,
)
max_seq_length = inference_params.num_tokens_to_generate + max(len(mcore_tokenizer.tokenize(p)) for p in inputs)
# set kv cache allocation to only num tokens in prompt + max tokens to generate
inference_wrapped_model.inference_wrapper_config.inference_max_seq_length = max_seq_length
inference_wrapped_model.inference_context.max_sequence_length = max_seq_length
if trainer.strategy.expert_model_parallel_size > 1:
inputs_on_this_dp_rank = inputs
else:
dp_size = trainer.strategy.distributed_sampler_kwargs['num_replicas']
dp_rank = trainer.strategy.distributed_sampler_kwargs['rank']
chunk_size = (len(inputs) + dp_size - 1) // dp_size
start_idx = dp_rank * chunk_size
end_idx = min(start_idx + chunk_size, len(inputs))
inputs_on_this_dp_rank = inputs[start_idx:end_idx]
results_on_this_dp_rank = inference.generate(
model=inference_wrapped_model,
tokenizer=mcore_tokenizer,
prompts=inputs_on_this_dp_rank,
encoder_prompts=encoder_prompts,
add_BOS=add_BOS,
max_batch_size=max_batch_size,
random_seed=random_seed,
inference_params=inference_params,
)
if trainer.strategy.expert_model_parallel_size > 1:
gathered_results = [r.generated_text if text_only else r for r in results_on_this_dp_rank]
else:
gathered_results = [None] * dp_size
all_gather_object(
gathered_results,
[r.generated_text if text_only else r for r in results_on_this_dp_rank],
group=parallel_state.get_data_parallel_group(),
)
gathered_results = [result for sublist in gathered_results for result in sublist]
assert len(gathered_results) == len(inputs)
if output_path is not None and is_global_rank_zero():
with open(output_path, "w") as f:
for sample, pred in zip(dataset if input_dataset else inputs, gathered_results):
if type(sample) == dict:
sample["label"] = sample.pop("output", None)
sample["prediction"] = pred if text_only else pred.generated_text
elif type(sample) == str:
sample = {"input": sample, "prediction": pred if text_only else pred.generated_text}
f.write(json.dumps(sample) + "\n")
logging.info(f"Predictions written to {output_path}")
return gathered_results
def _use_tokenizer(model: pl.LightningModule, data: pl.LightningDataModule, tokenizer: TokenizerType) -> None:
if tokenizer == "data":
_set_with_io(model, "tokenizer", data.tokenizer)
elif tokenizer == "model":
_set_with_io(data, "tokenizer", model.tokenizer)
else:
try:
from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec
if isinstance(tokenizer, TokenizerSpec):
_set_with_io(model, "tokenizer", tokenizer)
_set_with_io(data, "tokenizer", tokenizer)
else:
raise ValueError(f"Expected TokenizerSpec or 'data' or 'model', got: {tokenizer}")
except ImportError:
raise ValueError("TokenizerSpec is not available")
def _setup(
model: pl.LightningModule,
data: pl.LightningDataModule,
trainer: Trainer,
log: Optional[NeMoLogger],
resume: Optional[AutoResume],
optim: Optional[OptimizerModule],
tokenizer: Optional[TokenizerType],
model_transform: Optional[Union[PEFT, ModelTransform, Callable]],
) -> Any: # Return type is Any because app_state's type is not specified
configure_no_restart_validation_training_loop(trainer)
_log = log or NeMoLogger()
if resume and isinstance(model_transform, PEFT) and _log.ckpt:
logging.info("Disabling try_restore_best_ckpt restoration for adapters")
_log.ckpt.try_restore_best_ckpt = False
app_state = _log.setup(
trainer,
resume_if_exists=getattr(resume, "resume_if_exists", False),
task_config=getattr(train, "__io__", None),
)
# Configure telemetry via CallbackGroup
CallbackGroup.get_instance().update_config(nemo_version='v2', trainer=trainer, data=data)
if resume is not None:
CallbackGroup.get_instance().on_load_checkpoint_start()
resume.setup(trainer, model)
CallbackGroup.get_instance().on_load_checkpoint_end()
if optim:
CallbackGroup.get_instance().on_optimizer_init_start()
optim.connect(model)
CallbackGroup.get_instance().on_optimizer_init_end()
if tokenizer: # TODO: Improve this
_use_tokenizer(model, data, tokenizer)
if model_transform:
_set_with_io(model, "model_transform", model_transform)
# Add ModelTransform callback to Trainer if needed
if getattr(model, "model_transform", None):
if not any(isinstance(cb, ModelTransform) for cb in trainer.callbacks):
if isinstance(model_transform, ModelTransform):
trainer.callbacks.append(model_transform)
else:
trainer.callbacks.append(ModelTransform())
# Move jit callback at the end ensure it's applied on top of any model transformations (peft)
jit_cb = None
for i, cb in enumerate(trainer.callbacks):
if isinstance(cb, JitTransform):
assert jit_cb is None
jit_cb = trainer.callbacks.pop(i)
if jit_cb is not None:
trainer.callbacks.append(jit_cb)
return app_state
def _set_with_io(obj, attr, value):
setattr(obj, attr, value)
if hasattr(obj, "__io__") and hasattr(value, "__io__"):
setattr(obj.__io__, attr, deepcopy(value.__io__))
def _validate_config(
model: pl.LightningModule,
data: pl.LightningDataModule,
trainer: Trainer,
log: Optional[NeMoLogger] = None,
resume: Optional[AutoResume] = None,
optim: Optional[OptimizerModule] = None,
tokenizer: Optional[TokenizerType] = None,
model_transform: Optional[Union[PEFT, ModelTransform, Callable]] = None,
) -> None:
# Model validation
if hasattr(model, "config"):
assert getattr(model.config, "seq_length", 1) > 0
assert getattr(model.config, "max_position_embeddings", 1) > 0
assert model.config.num_layers > 0
assert model.config.hidden_size > 0
assert model.config.num_attention_heads > 0
assert model.config.ffn_hidden_size > 0
else:
assert not isinstance(trainer.strategy, nl.MegatronStrategy), "Expected model.config to exist"
# Data validation
assert data.micro_batch_size > 0
if isinstance(trainer.strategy, nl.MegatronStrategy):
assert data.global_batch_size > 0
assert data.seq_length > 0
assert (
data.global_batch_size % data.micro_batch_size == 0
), "Global batch size must be divisible by micro batch size in data module."
# Trainer validation
# MegatronStrategy validation
if isinstance(trainer.strategy, nl.MegatronStrategy):
# Basic validation
assert trainer.strategy.tensor_model_parallel_size > 0
assert trainer.strategy.pipeline_model_parallel_size > 0
assert trainer.strategy.context_parallel_size > 0
# DP validation
assert (trainer.num_devices * trainer.num_nodes) % (
trainer.strategy.tensor_model_parallel_size
* trainer.strategy.pipeline_model_parallel_size
* trainer.strategy.context_parallel_size
) == 0, "Number of GPUs must be divisible by the product of all parallelism sizes for data parallel."
assert (
data.global_batch_size
% (
data.micro_batch_size
* (
(trainer.num_devices * trainer.num_nodes)
/ (
trainer.strategy.tensor_model_parallel_size
* trainer.strategy.pipeline_model_parallel_size
* trainer.strategy.context_parallel_size
)
)
)
== 0
), "Global batch size must be divisible by the product of micro batch size and data parallel size"
# TP/SP validation
if trainer.strategy.tensor_model_parallel_size == 1:
if trainer.strategy.sequence_parallel == True:
warnings.warn("Disabling sequence parallelism because tensor model parallelism is disabled")
trainer.strategy.sequence_parallel = False
# PP/VP validation
if trainer.strategy.pipeline_model_parallel_size > 1:
assert (
trainer.strategy.pipeline_dtype is not None
), "pipeline_dtype must be set if pipeline model parallelism is enabled"
else:
if trainer.strategy.virtual_pipeline_model_parallel_size is not None:
warnings.warn("Disabling virtual pipeline parallelism because pipeline model parallelism is disabled")
trainer.strategy.virtual_pipeline_model_parallel_size = None
if trainer.strategy.pipeline_dtype is not None:
warnings.warn("Setting pipeline dtype to None because pipeline model parallelism is disabled")
trainer.strategy.pipeline_dtype = None
# CP validation
if trainer.strategy.context_parallel_size > 1:
if hasattr(model, "config"):
if model.config.seq_length is not None:
assert (
model.config.seq_length % (trainer.strategy.context_parallel_size * 2) == 0
), 'Sequence length must be divisible by 2 * context parallel size if context parallel is used.'
if isinstance(data, FineTuningDataModule):
# check calculate_per_token_loss to be True
# check average_in_collective to be False
# for context parallel to solve the issue of nan loss on ranks with all tokens masked
# (only happens in SFT)
assert (
model.config.calculate_per_token_loss
), "When finetuning with CP>1, model.config.calculate_per_token_loss must be True"
assert (
not trainer.strategy.ddp_config.average_in_collective
), "When finetuning with CP>1, average_in_collective must be False"
# EP validation
if trainer.strategy.expert_model_parallel_size > 1:
if hasattr(model, "config"):
assert (
model.config.num_moe_experts is not None
), "num_experts must be non None to use expert model parallelism"
assert (
model.config.num_moe_experts % trainer.strategy.expert_model_parallel_size == 0
), "Number of experts should be a multiple of expert model parallel_size."
def _build_directory_tree(path, tree=None, root_name=None):
"""Build a Rich Tree representation of a directory structure."""
from rich.tree import Tree
path = Path(path)
if tree is None:
tree = Tree(f"[bold blue]{root_name or path.name}[/bold blue]")
# Sort to have directories first, then files
items = sorted(path.iterdir(), key=lambda x: (not x.is_dir(), x.name))
for item in items:
if item.is_dir():
branch = tree.add(f"[bold cyan]{item.name}/[/bold cyan]")
_build_directory_tree(item, branch)
else:
# Color differently based on file extension
if item.suffix in ('.json', '.jsonl'):
tree.add(f"[yellow]{item.name}[/yellow]")
elif item.suffix in ('.pt', '.bin', '.ckpt', '.nemo'):
tree.add(f"[magenta]{item.name}[/magenta]")
elif item.suffix in ('.py', '.sh'):
tree.add(f"[green]{item.name}[/green]")
else:
tree.add(f"[white]{item.name}[/white]")
return tree
def _load_model_from_path(model: Union[pl.LightningModule, AnyPath]):
if isinstance(model, AnyPath):
model = io.load_context(ckpt_to_context_subdir(model), subpath="model")
return model
|