File size: 10,015 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Union

import numpy as np
import torch

from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec
from nemo.utils import logging

__all__ = ['AggregateTokenizer', 'TokenizerWrapper']


class DummyTokenizer:
    def __init__(self, vocab):
        self.vocab = vocab
        self.vocab_size = len(vocab)

    # minimum compatibility
    # since all the monolingual tokenizers have a vocab
    # additional methods could be added here
    def get_vocab(self):
        return self.vocab


class AggregateTokenizer(TokenizerSpec):
    '''
    AggregateTokenizer, allowing one to combine multiple regular monolongual tokenizers into one tokenizer.
    The intuition is that we can use existing tokenizers "as is", without retraining, and associate each tokenizer with a language id
    during text processing (language id will be used to route the incoming text sample to the right tokenizer)
    as well as a token id range for detokenization (e.g. [0..127] for tokenizer A, [128..255] for tokenizer B) so
    that the orignal text could be reconstructed. Note that we assume that the incoming dict of langs / tokenizers
    is ordered, e.g. the first tokenizer will be assigned a lower interval of token ids
        Args:
        tokenizers: dict of tokenizers, keys are lang ids, values are actual tokenizers
    '''

    def __init__(self, tokenizers: Dict):

        self.tokenizers_dict = tokenizers
        self.vocabulary = []

        # the tokenizers should produce non-overlapping, ordered token ids
        # keys are language ids
        self.token_id_offset = {}

        # keys are tokenizer numbers
        self.token_id_offset_by_tokenizer_num = {}
        offset = 0
        i = 0
        for lang, tokenizer in self.tokenizers_dict.items():
            self.token_id_offset[lang] = offset
            self.token_id_offset_by_tokenizer_num[i] = offset
            offset += len(tokenizer.vocab)
            i += 1

        for tokenizer in self.tokenizers_dict.values():
            self.vocabulary.extend(tokenizer.vocab)

        self.vocab_size = len(self.vocabulary)
        logging.info(f'Aggregate vocab size: {self.vocab_size}')

        # for compatibility purposes only -- right now only the get_vocab method
        # is supported, returning the joint vocab across all tokenizers
        self.tokenizer = DummyTokenizer(self.vocabulary)

        # lookup tables to speed up token to text operations
        # if there are two tokenizers, [0,1], ['en', 'es'], each with 128 tokens, the aggregate tokenizer
        # token range will be [0,255]. The below method provides three look up tables:
        # one, to convert the incoming token id -- e.g. 200 into its real id (200-127 = 73)
        # second, to compute the tokenizer id that should process that token (1)
        # third, the compute the lang id for that token ('es')
        offset_token_ids_by_token_id, tokenizers_by_token_id, langs_by_token_id = self._calculate_offsets()

        self.offset_token_ids_by_token_id = offset_token_ids_by_token_id
        self.tokenizers_by_token_id = tokenizers_by_token_id
        self.langs_by_token_id = langs_by_token_id

    def _calculate_offsets(self):
        offsets = {}
        tokenizers = {}
        langs = {}
        cur_num = 0
        tot = len(self.tokenizers_dict)
        for id in range(len(self.vocabulary)):
            off_id = id - list(self.token_id_offset.values())[cur_num]
            if cur_num + 1 < tot:
                if id >= list(self.token_id_offset.values())[cur_num + 1]:
                    cur_num += 1
                    off_id = id - list(self.token_id_offset.values())[cur_num]
            offsets[id] = off_id
            tokenizers[id] = list(self.tokenizers_dict.values())[cur_num]
            langs[id] = list(self.tokenizers_dict.keys())[cur_num]

        return offsets, tokenizers, langs

    def text_to_tokens(self, text, lang_id):
        tokenizer = self.tokenizers_dict[lang_id]
        return tokenizer.text_to_tokens(text)

    def text_to_ids(self, text, lang_id):
        tokenizer = self.tokenizers_dict[lang_id]
        token_ids = tokenizer.text_to_ids(text)
        token_ids[:] = [t + self.token_id_offset[lang_id] for t in token_ids]

        return token_ids

    def tokens_to_text(self, tokens, lang_id):
        if isinstance(tokens, np.ndarray):
            tokens = tokens.tolist()

        tokenizer = self.tokenizers_dict[lang_id]
        return tokenizer.decode_pieces(tokens)

    def ids_to_text(self, ids):
        if isinstance(ids, (np.ndarray, torch.Tensor)):
            ids = ids.tolist()

        tokens = []
        for id in ids:
            offset_id = self.offset_token_ids_by_token_id[id]
            tokenizer = self.tokenizers_by_token_id[id]
            tokens.extend(tokenizer.ids_to_tokens([offset_id]))
        text = ''.join(tokens).replace('▁', ' ')

        return text

    def token_to_id(self, token, lang_id):
        tokenizer = self.tokenizers_dict[lang_id]
        return tokenizer.token_to_id(token) + self.token_id_offset[lang_id]

    def ids_to_tokens(self, ids):
        tokens = []

        for id in ids:
            offset_id = self.offset_token_ids_by_token_id[id]
            tokenizer = self.tokenizers_by_token_id[id]
            token = tokenizer.ids_to_tokens([offset_id])[0]
            tokens.append(token)

        return tokens

    def ids_to_text_and_langs(self, ids):
        text_and_langs = []

        for id in ids:
            offset_id = self.offset_token_ids_by_token_id[id]
            tokenizer = self.tokenizers_by_token_id[id]
            token = tokenizer.ids_to_tokens([offset_id])[0]
            text = token.replace('▁', ' ')
            text = text.strip()  # strip for display purposes
            lang = self.langs_by_token_id[id]
            text_and_langs.append({'char': text, 'lang': lang})

        return text_and_langs

    def ids_to_words_and_langs(self, ids):
        words_and_langs = []

        word_ids = []  # tokens belonging to the current word
        for id in ids:
            offset_id = self.offset_token_ids_by_token_id[id]
            tokenizer = self.tokenizers_by_token_id[id]
            token = tokenizer.ids_to_tokens([offset_id])[0]
            if token.startswith('▁'):
                if len(word_ids) > 0:  # if this isn't the first word
                    word = self.ids_to_text(word_ids)
                    word = word.strip()  # strip for display purposes
                    lang = self.ids_to_lang(word_ids)
                    wl = {'word': word, 'lang': lang}
                    words_and_langs.append(wl)
                word_ids = []
            word_ids.append(id)

        if len(word_ids) > 0:  # the last tokens
            word = self.ids_to_text(word_ids)
            word = word.strip()  # strip for display purposes
            lang = self.ids_to_lang(word_ids)
            wl = {'word': word, 'lang': lang}
            words_and_langs.append(wl)

        return words_and_langs

    def ids_to_lang(self, ids):
        lang_cnts = {}

        for id in ids:
            lang = self.langs_by_token_id[id]
            lang_cnt = lang_cnts.get(lang)
            if lang_cnt is not None:
                lang_cnts[lang] = lang_cnt + 1
            else:
                lang_cnts[lang] = 1

        max_lang = ''
        max_lang_cnt = -1
        for lang, lang_cnt in lang_cnts.items():
            if lang_cnt > max_lang_cnt:
                max_lang = lang
                max_lang_cnt = lang_cnt

        return max_lang

    def tokens_to_ids(self, tokens: Union[str, List[str]], langs: Union[str, List[str]]) -> Union[int, List[int]]:
        if isinstance(tokens, str):
            tokens = [tokens]
        if isinstance(langs, str):
            langs = [langs]

        ids = []
        for i, token in enumerate(tokens):
            lang_id = langs[i]
            ids.append(self.token_to_id(token, lang_id))
        return ids

    def get_bos(self, lang_id: str) -> int:
        return self.tokenizers_dict[lang_id].bos + self.token_id_offset[lang_id]

    def get_eos(self, lang_id: str) -> int:
        return self.tokenizers_dict[lang_id].eos + self.token_id_offset[lang_id]

    @property
    def vocab(self):
        return self.vocabulary

    @property
    def langs(self):
        return list(self.tokenizers_dict.keys())


class TokenizerWrapper:
    """
    Provide a unified interface for NeMo Tokenizer, AggregateTokenizer, and (char) Parser.
    """

    def __init__(self, tokenizer):
        self._tokenizer = tokenizer
        if isinstance(tokenizer, AggregateTokenizer):
            self._impl = self._call_agg_tokenizer
        elif isinstance(tokenizer, TokenizerSpec):
            self._impl = self._call_tokenizer
        else:
            self._impl = self._call_parser

    def __call__(self, text: str, lang: str | None = None):
        return self._impl(text, lang)

    def _call_agg_tokenizer(self, text: str, lang: str | None = None):
        assert lang is not None, "Expected 'lang' to be set for AggregateTokenizer."
        return self._tokenizer.text_to_ids(text, lang)

    def _call_tokenizer(self, text: str, lang: str | None = None):
        return self._tokenizer.text_to_ids(text)

    def _call_parser(self, text: str, lang: str | None = None):
        return self._tokenizer(text)