Spaces:
Runtime error
Runtime error
File size: 44,486 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Tuple
import torch
from nemo.collections.asr.modules.conformer_encoder import ConformerEncoder
from nemo.collections.asr.parts.preprocessing.features import make_seq_mask_like
from nemo.collections.audio.modules.features import SpectrogramToMultichannelFeatures
from nemo.collections.audio.parts.submodules.multichannel import (
ChannelAttentionPool,
ChannelAveragePool,
ParametricMultichannelWienerFilter,
TransformAttendConcatenate,
TransformAverageConcatenate,
WPEFilter,
)
from nemo.collections.audio.parts.utils.audio import db2mag
from nemo.core.classes import NeuralModule, typecheck
from nemo.core.neural_types import FloatType, LengthsType, NeuralType, SpectrogramType
from nemo.utils import logging
class MaskEstimatorRNN(NeuralModule):
"""Estimate `num_outputs` masks from the input spectrogram
using stacked RNNs and projections.
The module is structured as follows:
input --> spatial features --> input projection -->
--> stacked RNNs --> output projection for each output --> sigmoid
Reference:
Multi-microphone neural speech separation for far-field multi-talker
speech recognition (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8462081)
Args:
num_outputs: Number of output masks to estimate
num_subbands: Number of subbands of the input spectrogram
num_features: Number of features after the input projections
num_layers: Number of RNN layers
num_hidden_features: Number of hidden features in RNN layers
num_input_channels: Number of input channels
dropout: If non-zero, introduces dropout on the outputs of each RNN layer except the last layer, with dropout
probability equal to `dropout`. Default: 0
bidirectional: If `True`, use bidirectional RNN.
rnn_type: Type of RNN, either `lstm` or `gru`. Default: `lstm`
mag_reduction: Channel-wise reduction for magnitude features
use_ipd: Use inter-channel phase difference (IPD) features
"""
def __init__(
self,
num_outputs: int,
num_subbands: int,
num_features: int = 1024,
num_layers: int = 3,
num_hidden_features: Optional[int] = None,
num_input_channels: Optional[int] = None,
dropout: float = 0,
bidirectional=True,
rnn_type: str = 'lstm',
mag_reduction: str = 'rms',
use_ipd: bool = None,
):
super().__init__()
if num_hidden_features is None:
num_hidden_features = num_features
self.features = SpectrogramToMultichannelFeatures(
num_subbands=num_subbands,
num_input_channels=num_input_channels,
mag_reduction=mag_reduction,
use_ipd=use_ipd,
)
self.input_projection = torch.nn.Linear(
in_features=self.features.num_features * self.features.num_channels, out_features=num_features
)
if rnn_type == 'lstm':
self.rnn = torch.nn.LSTM(
input_size=num_features,
hidden_size=num_hidden_features,
num_layers=num_layers,
batch_first=True,
dropout=dropout,
bidirectional=bidirectional,
)
elif rnn_type == 'gru':
self.rnn = torch.nn.GRU(
input_size=num_features,
hidden_size=num_hidden_features,
num_layers=num_layers,
batch_first=True,
dropout=dropout,
bidirectional=bidirectional,
)
else:
raise ValueError(f'Unknown rnn_type: {rnn_type}')
self.fc = torch.nn.Linear(
in_features=2 * num_features if bidirectional else num_features, out_features=num_features
)
self.norm = torch.nn.LayerNorm(num_features)
# Each output shares the RNN and has a separate projection
self.output_projections = torch.nn.ModuleList(
[torch.nn.Linear(in_features=num_features, out_features=num_subbands) for _ in range(num_outputs)]
)
self.output_nonlinearity = torch.nn.Sigmoid()
@property
def input_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"input": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"input_length": NeuralType(('B',), LengthsType()),
}
@property
def output_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"output": NeuralType(('B', 'C', 'D', 'T'), FloatType()),
"output_length": NeuralType(('B',), LengthsType()),
}
@typecheck()
def forward(self, input: torch.Tensor, input_length: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Estimate `num_outputs` masks from the input spectrogram.
Args:
input: C-channel input, shape (B, C, F, N)
input_length: Length of valid entries along the time dimension, shape (B,)
Returns:
Returns `num_outputs` masks in a tensor, shape (B, num_outputs, F, N),
and output length with shape (B,)
"""
input, _ = self.features(input=input, input_length=input_length)
B, num_feature_channels, num_features, N = input.shape
# (B, num_feat_channels, num_feat, N) -> (B, N, num_feat_channels, num_feat)
input = input.permute(0, 3, 1, 2)
# (B, N, num_feat_channels, num_feat) -> (B, N, num_feat_channels * num_features)
input = input.view(B, N, -1)
# Apply projection on num_feat
input = self.input_projection(input)
# Apply RNN on the input sequence
input_packed = torch.nn.utils.rnn.pack_padded_sequence(
input, input_length.cpu(), batch_first=True, enforce_sorted=False
).to(input.device)
self.rnn.flatten_parameters()
input_packed, _ = self.rnn(input_packed)
output, output_length = torch.nn.utils.rnn.pad_packed_sequence(input_packed, batch_first=True)
output_length = output_length.to(input.device)
# Layer normalization and skip connection
output = self.norm(self.fc(output)) + input
# Create `num_outputs` masks
masks = []
for output_projection in self.output_projections:
# Output projection
mask = output_projection(output)
mask = self.output_nonlinearity(mask)
# Back to the original format
# (B, N, F) -> (B, F, N)
mask = mask.transpose(2, 1)
# Append to the output
masks.append(mask)
# Stack along channel dimension to get (B, M, F, N)
masks = torch.stack(masks, axis=1)
# Mask frames beyond output length
length_mask: torch.Tensor = make_seq_mask_like(
lengths=output_length, like=masks, time_dim=-1, valid_ones=False
)
masks = masks.masked_fill(length_mask, 0.0)
return masks, output_length
class MaskEstimatorFlexChannels(NeuralModule):
"""Estimate `num_outputs` masks from the input spectrogram
using stacked channel-wise and temporal layers.
This model is using interlaved channel blocks and temporal blocks, and
it can process arbitrary number of input channels.
Default channel block is the transform-average-concatenate layer.
Default temporal block is the Conformer encoder.
Reduction from multichannel signal to single-channel signal is performed
after `channel_reduction_position` blocks. Only temporal blocks are used afterwards.
After the sequence of blocks, the output mask is computed using an additional
output temporal layer and a nonlinearity.
References:
- Yoshioka et al, VarArray: Array-Geometry-Agnostic Continuous Speech Separation, 2022
- Jukić et al, Flexible multichannel speech enhancement for noise-robust frontend, 2023
Args:
num_outputs: Number of output masks.
num_subbands: Number of subbands on the input spectrogram.
num_blocks: Number of blocks in the model.
channel_reduction_position: After this block, the signal will be reduced across channels.
channel_reduction_type: Reduction across channels: 'average' or 'attention'
channel_block_type: Block for channel processing: 'transform_average_concatenate' or 'transform_attend_concatenate'
temporal_block_type: Block for temporal processing: 'conformer_encoder'
temporal_block_num_layers: Number of layers for the temporal block
temporal_block_num_heads: Number of heads for the temporal block
temporal_block_dimension: The hidden size of the model
temporal_block_self_attention_model: Self attention model for the temporal block
temporal_block_att_context_size: Attention context size for the temporal block
mag_reduction: Channel-wise reduction for magnitude features
mag_power: Power to apply on magnitude features
use_ipd: Use inter-channel phase difference (IPD) features
mag_normalization: Normalize using mean ('mean') or mean and variance ('mean_var')
ipd_normalization: Normalize using mean ('mean') or mean and variance ('mean_var')
"""
def __init__(
self,
num_outputs: int,
num_subbands: int,
num_blocks: int,
channel_reduction_position: int = -1, # if 0, apply before block 0, if -1 apply at the end
channel_reduction_type: str = 'attention',
channel_block_type: str = 'transform_attend_concatenate',
temporal_block_type: str = 'conformer_encoder',
temporal_block_num_layers: int = 5,
temporal_block_num_heads: int = 4,
temporal_block_dimension: int = 128,
temporal_block_self_attention_model: str = 'rel_pos',
temporal_block_att_context_size: Optional[List[int]] = None,
num_input_channels: Optional[int] = None,
mag_reduction: str = 'abs_mean',
mag_power: Optional[float] = None,
use_ipd: bool = True,
mag_normalization: Optional[str] = None,
ipd_normalization: Optional[str] = None,
):
super().__init__()
self.features = SpectrogramToMultichannelFeatures(
num_subbands=num_subbands,
num_input_channels=num_input_channels,
mag_reduction=mag_reduction,
mag_power=mag_power,
use_ipd=use_ipd,
mag_normalization=mag_normalization,
ipd_normalization=ipd_normalization,
)
self.num_blocks = num_blocks
logging.debug('Total number of blocks: %d', self.num_blocks)
# Channel reduction
if channel_reduction_position == -1:
# Apply reduction after the last layer
channel_reduction_position = num_blocks
if channel_reduction_position > num_blocks:
raise ValueError(
f'Channel reduction position {channel_reduction_position} exceeds the number of blocks {num_blocks}'
)
self.channel_reduction_position = channel_reduction_position
logging.debug('Channel reduction will be applied before block %d', self.channel_reduction_position)
# Prepare processing blocks
self.channel_blocks = torch.nn.ModuleList()
self.temporal_blocks = torch.nn.ModuleList()
for n in range(num_blocks):
logging.debug('Prepare block %d', n)
# Setup channel block
if n < channel_reduction_position:
# Number of input features is either the number of input channels or the number of temporal block features
channel_in_features = self.features.num_features if n == 0 else temporal_block_dimension
logging.debug(
'Setup channel block %s with %d input features and %d output features',
channel_block_type,
channel_in_features,
temporal_block_dimension,
)
# Instantiante the channel block
if channel_block_type == 'transform_average_concatenate':
channel_block = TransformAverageConcatenate(
in_features=channel_in_features, out_features=temporal_block_dimension
)
elif channel_block_type == 'transform_attend_concatenate':
channel_block = TransformAttendConcatenate(
in_features=channel_in_features, out_features=temporal_block_dimension
)
else:
raise ValueError(f'Unknown channel layer type: {channel_block_type}')
self.channel_blocks.append(channel_block)
# Setup temporal block
temporal_in_features = (
self.features.num_features if n == self.channel_reduction_position == 0 else temporal_block_dimension
)
logging.debug('Setup temporal block %s', temporal_block_type)
if temporal_block_type == 'conformer_encoder':
temporal_block = ConformerEncoder(
feat_in=temporal_in_features,
n_layers=temporal_block_num_layers,
d_model=temporal_block_dimension,
subsampling_factor=1,
self_attention_model=temporal_block_self_attention_model,
att_context_size=temporal_block_att_context_size,
n_heads=temporal_block_num_heads,
)
else:
raise ValueError(f'Unknown temporal block {temporal_block}.')
self.temporal_blocks.append(temporal_block)
logging.debug('Setup channel reduction %s', channel_reduction_type)
if channel_reduction_type == 'average':
# Mean across channel dimension
self.channel_reduction = ChannelAveragePool()
elif channel_reduction_type == 'attention':
# Number of input features is either the number of input channels or the number of temporal block features
channel_reduction_in_features = (
self.features.num_features if self.channel_reduction_position == 0 else temporal_block_dimension
)
# Attention across channel dimension
self.channel_reduction = ChannelAttentionPool(in_features=channel_reduction_in_features)
else:
raise ValueError(f'Unknown channel reduction type: {channel_reduction_type}')
logging.debug('Setup %d output layers', num_outputs)
self.output_layers = torch.nn.ModuleList(
[
ConformerEncoder(
feat_in=temporal_block_dimension,
n_layers=1,
d_model=temporal_block_dimension,
feat_out=num_subbands,
subsampling_factor=1,
self_attention_model=temporal_block_self_attention_model,
att_context_size=temporal_block_att_context_size,
n_heads=temporal_block_num_heads,
)
for _ in range(num_outputs)
]
)
# Output nonlinearity
self.output_nonlinearity = torch.nn.Sigmoid()
@property
def input_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"input": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"input_length": NeuralType(('B',), LengthsType()),
}
@property
def output_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"output": NeuralType(('B', 'C', 'D', 'T'), FloatType()),
"output_length": NeuralType(('B',), LengthsType()),
}
@typecheck()
def forward(self, input: torch.Tensor, input_length: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Estimate `num_outputs` masks from the input spectrogram."""
# get input features from a complex-valued spectrogram, (B, C, F, T)
output, output_length = self.features(input=input, input_length=input_length)
# batch and num channels
B, M = input.size(0), input.size(1)
# process all blocks
for n in range(self.num_blocks):
if n < self.channel_reduction_position:
# apply multichannel block
output = self.channel_blocks[n](input=output)
# change to a single-stream format
F, T = output.size(-2), output.size(-1)
# (B, M, F, T) -> (B * M, F, T)
output = output.reshape(-1, F, T)
if M > 1:
# adjust the lengths accordingly
output_length = output_length.repeat_interleave(M)
elif n == self.channel_reduction_position:
# apply channel reduction
# (B, M, F, T) -> (B, F, T)
output = self.channel_reduction(input=output)
# apply temporal model on each channel independently
with typecheck.disable_checks():
# output is AcousticEncodedRepresentation, conformer encoder requires SpectrogramType
output, output_length = self.temporal_blocks[n](audio_signal=output, length=output_length)
# if channel reduction has not been applied yet, go back to multichannel layout
if n < self.channel_reduction_position:
# back to multi-channel format with possibly a different number of features
T = output.size(-1)
# (B * M, F, T) -> (B, M, F, T)
output = output.reshape(B, M, -1, T)
if M > 1:
# convert lengths from single-stream format to original multichannel
output_length = output_length[0:-1:M]
if self.channel_reduction_position == self.num_blocks:
# apply channel reduction after the last layer
# (B, M, F, T) -> (B, F, T)
output = self.channel_reduction(input=output)
# final mask for each output
masks = []
for output_layer in self.output_layers:
# calculate mask
with typecheck.disable_checks():
# output is AcousticEncodedRepresentation, conformer encoder requires SpectrogramType
mask, mask_length = output_layer(audio_signal=output, length=output_length)
mask = self.output_nonlinearity(mask)
# append to all masks
masks.append(mask)
# stack masks along channel dimensions
masks = torch.stack(masks, dim=1)
return masks, mask_length
class MaskEstimatorGSS(NeuralModule):
"""Estimate masks using guided source separation with a complex
angular Central Gaussian Mixture Model (cACGMM) [1].
This module corresponds to `GSS` in Fig. 2 in [2].
Notation is approximately following [1], where `gamma` denotes
the time-frequency mask, `alpha` denotes the mixture weights,
and `BM` denotes the shape matrix. Additionally, the provided
source activity is denoted as `activity`.
Args:
num_iterations: Number of iterations for the EM algorithm
eps: Small value for regularization
dtype: Data type for internal computations (default `torch.cdouble`)
References:
[1] Ito et al., Complex Angular Central Gaussian Mixture Model for Directional Statistics in Mask-Based Microphone Array Signal Processing, 2016
[2] Boeddeker et al., Front-End Processing for the CHiME-5 Dinner Party Scenario, 2018
"""
def __init__(self, num_iterations: int = 3, eps: float = 1e-8, dtype: torch.dtype = torch.cdouble):
super().__init__()
if num_iterations <= 0:
raise ValueError(f'Number of iterations must be positive, got {num_iterations}')
# number of iterations for the EM algorithm
self.num_iterations = num_iterations
if eps <= 0:
raise ValueError(f'eps must be positive, got {eps}')
# small regularization constant
self.eps = eps
# internal calculations
if dtype not in [torch.cfloat, torch.cdouble]:
raise ValueError(f'Unsupported dtype {dtype}, expecting cfloat or cdouble')
self.dtype = dtype
logging.debug('Initialized %s', self.__class__.__name__)
logging.debug('\tnum_iterations: %s', self.num_iterations)
logging.debug('\teps: %g', self.eps)
logging.debug('\tdtype: %s', self.dtype)
def normalize(self, x: torch.Tensor, dim: int = 1) -> torch.Tensor:
"""Normalize input to have a unit L2-norm across `dim`.
By default, normalizes across the input channels.
Args:
x: C-channel input signal, shape (B, C, F, T)
dim: Dimension for normalization, defaults to -3 to normalize over channels
Returns:
Normalized signal, shape (B, C, F, T)
"""
norm_x = torch.linalg.vector_norm(x, ord=2, dim=dim, keepdim=True)
x = x / (norm_x + self.eps)
return x
@typecheck(
input_types={
'alpha': NeuralType(('B', 'C', 'D')),
'activity': NeuralType(('B', 'C', 'T')),
'log_pdf': NeuralType(('B', 'C', 'D', 'T')),
},
output_types={
'gamma': NeuralType(('B', 'C', 'D', 'T')),
},
)
def update_masks(self, alpha: torch.Tensor, activity: torch.Tensor, log_pdf: torch.Tensor) -> torch.Tensor:
"""Update masks for the cACGMM.
Args:
alpha: component weights, shape (B, num_outputs, F)
activity: temporal activity for the components, shape (B, num_outputs, T)
log_pdf: logarithm of the PDF, shape (B, num_outputs, F, T)
Returns:
Masks for the components of the model, shape (B, num_outputs, F, T)
"""
# (B, num_outputs, F)
# normalize across outputs in the log domain
log_gamma = log_pdf - torch.max(log_pdf, axis=-3, keepdim=True)[0]
gamma = torch.exp(log_gamma)
# calculate the mask using weight, pdf and source activity
gamma = alpha[..., None] * gamma * activity[..., None, :]
# normalize across components/output channels
gamma = gamma / (torch.sum(gamma, dim=-3, keepdim=True) + self.eps)
return gamma
@typecheck(
input_types={
'gamma': NeuralType(('B', 'C', 'D', 'T')),
},
output_types={
'alpha': NeuralType(('B', 'C', 'D')),
},
)
def update_weights(self, gamma: torch.Tensor) -> torch.Tensor:
"""Update weights for the individual components
in the mixture model.
Args:
gamma: masks, shape (B, num_outputs, F, T)
Returns:
Component weights, shape (B, num_outputs, F)
"""
alpha = torch.mean(gamma, dim=-1)
return alpha
@typecheck(
input_types={
'z': NeuralType(('B', 'C', 'D', 'T')),
'gamma': NeuralType(('B', 'C', 'D', 'T')),
'zH_invBM_z': NeuralType(('B', 'C', 'D', 'T')),
},
output_types={
'log_pdf': NeuralType(('B', 'C', 'D', 'T')),
'zH_invBM_z': NeuralType(('B', 'C', 'D', 'T')),
},
)
def update_pdf(
self, z: torch.Tensor, gamma: torch.Tensor, zH_invBM_z: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Update PDF of the cACGMM.
Args:
z: directional statistics, shape (B, num_inputs, F, T)
gamma: masks, shape (B, num_outputs, F, T)
zH_invBM_z: energy weighted by shape matrices, shape (B, num_outputs, F, T)
Returns:
Logarithm of the PDF, shape (B, num_outputs, F, T), the energy term, shape (B, num_outputs, F, T)
"""
num_inputs = z.size(-3)
# shape (B, num_outputs, F, T)
scale = gamma / (zH_invBM_z + self.eps)
# scale outer product and sum over time
# shape (B, num_outputs, F, num_inputs, num_inputs)
BM = num_inputs * torch.einsum('bmft,bift,bjft->bmfij', scale.to(z.dtype), z, z.conj())
# normalize across time
denom = torch.sum(gamma, dim=-1)
BM = BM / (denom[..., None, None] + self.eps)
# make sure the matrix is Hermitian
BM = (BM + BM.conj().transpose(-1, -2)) / 2
# use eigenvalue decomposition to calculate the log determinant
# and the inverse-weighted energy term
L, Q = torch.linalg.eigh(BM)
# BM is positive definite, so all eigenvalues should be positive
# However, small negative values may occur due to a limited precision
L = torch.clamp(L.real, min=self.eps)
# PDF is invariant to scaling of the shape matrix [1], so
# eignevalues can be normalized (across num_inputs)
L = L / (torch.max(L, axis=-1, keepdim=True)[0] + self.eps)
# small regularization to avoid numerical issues
L = L + self.eps
# calculate the log determinant using the eigenvalues
log_detBM = torch.sum(torch.log(L), dim=-1)
# calculate the energy term using the inverse eigenvalues
# NOTE: keeping an alternative implementation for reference (slower)
# zH_invBM_z = torch.einsum('bift,bmfij,bmfj,bmfkj,bkft->bmft', z.conj(), Q, (1 / L).to(Q.dtype), Q.conj(), z)
# zH_invBM_z = zH_invBM_z.abs() + self.eps # small regularization
# calc sqrt(L) * Q^H * z
zH_invBM_z = torch.einsum('bmfj,bmfkj,bkft->bmftj', (1 / L.sqrt()).to(Q.dtype), Q.conj(), z)
# calc squared norm
zH_invBM_z = zH_invBM_z.abs().pow(2).sum(-1)
# small regularization
zH_invBM_z = zH_invBM_z + self.eps
# final log PDF
log_pdf = -num_inputs * torch.log(zH_invBM_z) - log_detBM[..., None]
return log_pdf, zH_invBM_z
@property
def input_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"input": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"activity": NeuralType(('B', 'C', 'T')),
}
@property
def output_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"gamma": NeuralType(('B', 'C', 'D', 'T')),
}
@typecheck()
def forward(self, input: torch.Tensor, activity: torch.Tensor) -> torch.Tensor:
"""Apply GSS to estimate the time-frequency masks for each output source.
Args:
input: batched C-channel input signal, shape (B, num_inputs, F, T)
activity: batched frame-wise activity for each output source, shape (B, num_outputs, T)
Returns:
Masks for the components of the model, shape (B, num_outputs, F, T)
"""
B, num_inputs, F, T = input.shape
num_outputs = activity.size(1)
device = input.device.type
if activity.size(0) != B:
raise ValueError(f'Batch dimension mismatch: activity {activity.shape} vs input {input.shape}')
if activity.size(-1) != T:
raise ValueError(f'Time dimension mismatch: activity {activity.shape} vs input {input.shape}')
if num_outputs == 1:
raise ValueError(f'Expecting multiple outputs, got {num_outputs}')
with torch.amp.autocast(device, enabled=False):
input = input.to(dtype=self.dtype)
assert input.is_complex(), f'Expecting complex input, got {input.dtype}'
# convert input to directional statistics by normalizing across channels
z = self.normalize(input, dim=-3)
# initialize masks
gamma = torch.clamp(activity, min=self.eps)
# normalize across channels
gamma = gamma / torch.sum(gamma, dim=-2, keepdim=True)
# expand to input shape
gamma = gamma.unsqueeze(2).expand(-1, -1, F, -1)
# initialize the energy term
zH_invBM_z = torch.ones(B, num_outputs, F, T, dtype=input.dtype, device=input.device)
# EM iterations
for it in range(self.num_iterations):
alpha = self.update_weights(gamma=gamma)
log_pdf, zH_invBM_z = self.update_pdf(z=z, gamma=gamma, zH_invBM_z=zH_invBM_z)
gamma = self.update_masks(alpha=alpha, activity=activity, log_pdf=log_pdf)
if torch.any(torch.isnan(gamma)):
raise RuntimeError(f'gamma contains NaNs: {gamma}')
return gamma
class MaskReferenceChannel(NeuralModule):
"""A simple mask processor which applies mask
on ref_channel of the input signal.
Args:
ref_channel: Index of the reference channel.
mask_min_db: Threshold mask to a minimal value before applying it, defaults to -200dB
mask_max_db: Threshold mask to a maximal value before applying it, defaults to 0dB
"""
def __init__(self, ref_channel: int = 0, mask_min_db: float = -200, mask_max_db: float = 0):
super().__init__()
self.ref_channel = ref_channel
# Mask thresholding
self.mask_min = db2mag(mask_min_db)
self.mask_max = db2mag(mask_max_db)
logging.debug('Initialized %s with', self.__class__.__name__)
logging.debug('\tref_channel: %d', self.ref_channel)
logging.debug('\tmask_min: %f', self.mask_min)
logging.debug('\tmask_max: %f', self.mask_max)
@property
def input_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"input": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"input_length": NeuralType(('B',), LengthsType()),
"mask": NeuralType(('B', 'C', 'D', 'T'), FloatType()),
}
@property
def output_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"output": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"output_length": NeuralType(('B',), LengthsType()),
}
@typecheck()
def forward(
self,
input: torch.Tensor,
input_length: torch.Tensor,
mask: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply mask on `ref_channel` of the input signal.
This can be used to generate multi-channel output.
If `mask` has `M` channels, the output will have `M` channels as well.
Args:
input: Input signal complex-valued spectrogram, shape (B, C, F, N)
input_length: Length of valid entries along the time dimension, shape (B,)
mask: Mask for M outputs, shape (B, M, F, N)
Returns:
M-channel output complex-valed spectrogram with shape (B, M, F, N)
"""
# Apply thresholds
mask = torch.clamp(mask, min=self.mask_min, max=self.mask_max)
# Apply each output mask on the ref channel
output = mask * input[:, self.ref_channel : self.ref_channel + 1, ...]
return output, input_length
class MaskBasedBeamformer(NeuralModule):
"""Multi-channel processor using masks to estimate signal statistics.
Args:
filter_type: string denoting the type of the filter. Defaults to `mvdr`
filter_beta: Parameter of the parameteric multichannel Wiener filter
filter_rank: Parameter of the parametric multichannel Wiener filter
filter_postfilter: Optional, postprocessing of the filter
ref_channel: Optional, reference channel. If None, it will be estimated automatically
ref_hard: If true, hard (one-hot) reference. If false, a soft reference
ref_hard_use_grad: If true, use straight-through gradient when using the hard reference
ref_subband_weighting: If true, use subband weighting when estimating reference channel
num_subbands: Optional, used to determine the parameter size for reference estimation
mask_min_db: Threshold mask to a minimal value before applying it, defaults to -200dB
mask_max_db: Threshold mask to a maximal value before applying it, defaults to 0dB
diag_reg: Optional, diagonal regularization for the multichannel filter
eps: Small regularization constant to avoid division by zero
"""
def __init__(
self,
filter_type: str = 'mvdr_souden',
filter_beta: float = 0.0,
filter_rank: str = 'one',
filter_postfilter: Optional[str] = None,
ref_channel: Optional[int] = 0,
ref_hard: bool = True,
ref_hard_use_grad: bool = False,
ref_subband_weighting: bool = False,
num_subbands: Optional[int] = None,
mask_min_db: float = -200,
mask_max_db: float = 0,
postmask_min_db: float = 0,
postmask_max_db: float = 0,
diag_reg: Optional[float] = 1e-6,
eps: float = 1e-8,
):
super().__init__()
if filter_type not in ['pmwf', 'mvdr_souden']:
raise ValueError(f'Unknown filter type {filter_type}')
self.filter_type = filter_type
if self.filter_type == 'mvdr_souden' and filter_beta != 0:
logging.warning(
'Using filter type %s: beta will be automatically set to zero (current beta %f) and rank to one (current rank %s).',
self.filter_type,
filter_beta,
filter_rank,
)
filter_beta = 0.0
filter_rank = 'one'
# Prepare filter
self.filter = ParametricMultichannelWienerFilter(
beta=filter_beta,
rank=filter_rank,
postfilter=filter_postfilter,
ref_channel=ref_channel,
ref_hard=ref_hard,
ref_hard_use_grad=ref_hard_use_grad,
ref_subband_weighting=ref_subband_weighting,
num_subbands=num_subbands,
diag_reg=diag_reg,
eps=eps,
)
# Mask thresholding
if mask_min_db >= mask_max_db:
raise ValueError(
f'Lower bound for the mask {mask_min_db}dB must be smaller than the upper bound {mask_max_db}dB'
)
self.mask_min = db2mag(mask_min_db)
self.mask_max = db2mag(mask_max_db)
# Postmask thresholding
if postmask_min_db > postmask_max_db:
raise ValueError(
f'Lower bound for the postmask {postmask_min_db}dB must be smaller or equal to the upper bound {postmask_max_db}dB'
)
self.postmask_min = db2mag(postmask_min_db)
self.postmask_max = db2mag(postmask_max_db)
logging.debug('Initialized %s', self.__class__.__name__)
logging.debug('\tfilter_type: %s', self.filter_type)
logging.debug('\tmask_min: %e', self.mask_min)
logging.debug('\tmask_max: %e', self.mask_max)
logging.debug('\tpostmask_min: %e', self.postmask_min)
logging.debug('\tpostmask_max: %e', self.postmask_max)
@property
def input_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"input": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"mask": NeuralType(('B', 'C', 'D', 'T'), FloatType()),
"mask_undesired": NeuralType(('B', 'C', 'D', 'T'), FloatType(), optional=True),
"input_length": NeuralType(('B',), LengthsType(), optional=True),
}
@property
def output_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"output": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"output_length": NeuralType(('B',), LengthsType(), optional=True),
}
@typecheck()
def forward(
self,
input: torch.Tensor,
mask: torch.Tensor,
mask_undesired: Optional[torch.Tensor] = None,
input_length: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Apply a mask-based beamformer to the input spectrogram.
This can be used to generate multi-channel output.
If `mask` has multiple channels, a multichannel filter is created for each mask,
and the output is concatenation of individual outputs along the channel dimension.
The total number of outputs is `num_masks * M`, where `M` is the number of channels
at the filter output.
Args:
input: Input signal complex-valued spectrogram, shape (B, C, F, N)
mask: Mask for M output signals, shape (B, num_masks, F, N)
input_length: Length of valid entries along the time dimension, shape (B,)
Returns:
Multichannel output signal complex-valued spectrogram, shape (B, num_masks * M, F, N)
"""
# Length mask
if input_length is not None:
length_mask: torch.Tensor = make_seq_mask_like(
lengths=input_length, like=mask[:, 0, ...], time_dim=-1, valid_ones=False
)
# Use each mask to generate an output
output, num_masks = [], mask.size(1)
for m in range(num_masks):
# Desired signal mask
mask_d = mask[:, m, ...]
# Undesired signal mask
if mask_undesired is not None:
mask_u = mask_undesired[:, m, ...]
elif num_masks == 1:
# If a single mask is estimated, use the complement
mask_u = 1 - mask_d
else:
# Use sum of all other sources
mask_u = torch.sum(mask, dim=1) - mask_d
# Threshold masks
mask_d = torch.clamp(mask_d, min=self.mask_min, max=self.mask_max)
mask_u = torch.clamp(mask_u, min=self.mask_min, max=self.mask_max)
if input_length is not None:
mask_d = mask_d.masked_fill(length_mask, 0.0)
mask_u = mask_u.masked_fill(length_mask, 0.0)
# Apply filter
output_m = self.filter(input=input, mask_s=mask_d, mask_n=mask_u)
# Optional: apply a postmask with min and max thresholds
if self.postmask_min < self.postmask_max:
postmask_m = torch.clamp(mask[:, m, ...], min=self.postmask_min, max=self.postmask_max)
output_m = output_m * postmask_m.unsqueeze(1)
# Save the current output (B, M, F, T)
output.append(output_m)
# Combine outputs along the channel dimension
# Each output is (B, M, F, T)
output = torch.concatenate(output, axis=1)
# Apply masking
if input_length is not None:
output = output.masked_fill(length_mask[:, None, ...], 0.0)
return output, input_length
class MaskBasedDereverbWPE(NeuralModule):
"""Multi-channel linear prediction-based dereverberation using
weighted prediction error for filter estimation.
An optional mask to estimate the signal power can be provided.
If a time-frequency mask is not provided, the algorithm corresponds
to the conventional WPE algorithm.
Args:
filter_length: Length of the convolutional filter for each channel in frames.
prediction_delay: Delay of the input signal for multi-channel linear prediction in frames.
num_iterations: Number of iterations for reweighting
mask_min_db: Threshold mask to a minimal value before applying it, defaults to -200dB
mask_max_db: Threshold mask to a minimal value before applying it, defaults to 0dB
diag_reg: Diagonal regularization for WPE
eps: Small regularization constant
dtype: Data type for internal computations
References:
- Kinoshita et al, Neural network-based spectrum estimation for online WPE dereverberation, 2017
- Yoshioka and Nakatani, Generalization of Multi-Channel Linear Prediction Methods for Blind MIMO Impulse Response Shortening, 2012
"""
def __init__(
self,
filter_length: int,
prediction_delay: int,
num_iterations: int = 1,
mask_min_db: float = -200,
mask_max_db: float = 0,
diag_reg: Optional[float] = 1e-6,
eps: float = 1e-8,
dtype: torch.dtype = torch.cdouble,
):
super().__init__()
# Filter setup
self.filter = WPEFilter(
filter_length=filter_length, prediction_delay=prediction_delay, diag_reg=diag_reg, eps=eps
)
self.num_iterations = num_iterations
# Mask thresholding
self.mask_min = db2mag(mask_min_db)
self.mask_max = db2mag(mask_max_db)
# Internal calculations
if dtype not in [torch.cfloat, torch.cdouble]:
raise ValueError(f'Unsupported dtype {dtype}, expecting torch.cfloat or torch.cdouble')
self.dtype = dtype
logging.debug('Initialized %s', self.__class__.__name__)
logging.debug('\tnum_iterations: %s', self.num_iterations)
logging.debug('\tmask_min: %g', self.mask_min)
logging.debug('\tmask_max: %g', self.mask_max)
logging.debug('\tdtype: %s', self.dtype)
@property
def input_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"input": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"input_length": NeuralType(('B',), LengthsType(), optional=True),
"mask": NeuralType(('B', 'C', 'D', 'T'), FloatType(), optional=True),
}
@property
def output_types(self) -> Dict[str, NeuralType]:
"""Returns definitions of module output ports."""
return {
"output": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
"output_length": NeuralType(('B',), LengthsType(), optional=True),
}
@typecheck()
def forward(
self, input: torch.Tensor, input_length: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Given an input signal `input`, apply the WPE dereverberation algoritm.
Args:
input: C-channel complex-valued spectrogram, shape (B, C, F, T)
input_length: Optional length for each signal in the batch, shape (B,)
mask: Optional mask, shape (B, 1, F, N) or (B, C, F, T)
Returns:
Processed tensor with the same number of channels as the input,
shape (B, C, F, T).
"""
io_dtype = input.dtype
device = input.device.type
with torch.amp.autocast(device, enabled=False):
output = input.to(dtype=self.dtype)
if not output.is_complex():
raise RuntimeError(f'Expecting complex input, got {output.dtype}')
for i in range(self.num_iterations):
magnitude = torch.abs(output)
if i == 0 and mask is not None:
# Apply thresholds
mask = torch.clamp(mask, min=self.mask_min, max=self.mask_max)
# Mask magnitude
magnitude = mask * magnitude
# Calculate power
power = magnitude**2
# Apply filter
output, output_length = self.filter(input=output, input_length=input_length, power=power)
return output.to(io_dtype), output_length
|