Spaces:
Runtime error
Runtime error
File size: 8,237 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# It contains the default values for training an LSTM-Transducer ASR model, large size (~170M for bidirectional and ~130M for unidirectional) with Transducer loss and sub-word encoding.
# Architecture and training config:
# Default learning parameters in this config are set for effective batch size of 2K. To train it with smaller effective
# batch sizes, you may need to re-tune the learning parameters or use higher accumulate_grad_batches.
# Followed the architecture suggested in the following paper:
# 'STREAMING END-TO-END SPEECH RECOGNITION FOR MOBILE DEVICES' by Yanzhang He et al. (https://arxiv.org/pdf/1811.06621.pdf)
# You may find more info about LSTM-Transducer here: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/models.html#lstm-transducer
# Pre-trained models of LSTM-Transducer can be found here: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/results.html
name: "LSTM-Transducer-BPE"
model:
sample_rate: 16000
compute_eval_loss: false # eval samples can be very long and exhaust memory. Disable computation of transducer loss during validation/testing with this flag.
log_prediction: true # enables logging sample predictions in the output during training
skip_nan_grad: false
model_defaults:
enc_hidden: 640
pred_hidden: 640
joint_hidden: 640
rnn_hidden_size: 2048
train_ds:
manifest_filepath: ???
sample_rate: ${model.sample_rate}
batch_size: 16 # you may increase batch_size if your memory allows
shuffle: true
num_workers: 4
pin_memory: true
max_duration: 16.7 # it is set for LibriSpeech, you may need to update it for your dataset
min_duration: 0.1
# tarred datasets
is_tarred: false
tarred_audio_filepaths: null
shuffle_n: 2048
# bucketing params
bucketing_strategy: "synced_randomized"
bucketing_batch_size: null
validation_ds:
manifest_filepath: ???
sample_rate: ${model.sample_rate}
batch_size: 16
shuffle: false
num_workers: 4
pin_memory: true
test_ds:
manifest_filepath: null
sample_rate: ${model.sample_rate}
batch_size: 16
shuffle: false
num_workers: 4
pin_memory: true
# You may find more detail on how to train a tokenizer at: /scripts/tokenizers/process_asr_text_tokenizer.py
tokenizer:
dir: ??? # path to directory which contains either tokenizer.model (bpe) or vocab.txt (for wpe)
type: bpe # Can be either bpe (SentencePiece tokenizer) or wpe (WordPiece tokenizer)
preprocessor:
_target_: nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor
sample_rate: ${model.sample_rate}
normalize: "per_feature"
window_size: 0.025
window_stride: 0.01
window: "hann"
features: 80
n_fft: 512
frame_splicing: 1
dither: 0.00001
pad_to: 0
spec_augment:
_target_: nemo.collections.asr.modules.SpectrogramAugmentation
freq_masks: 2 # set to zero to disable it
time_masks: 10 # set to zero to disable it
freq_width: 27
time_width: 0.05
encoder:
_target_: nemo.collections.asr.modules.RNNEncoder
feat_in: ${model.preprocessor.features}
n_layers: 8
d_model: 2048
proj_size: ${model.model_defaults.pred_hidden} # you may set it if you need different output size other than the default d_model
rnn_type: "lstm" # it can be lstm, gru or rnn
bidirectional: true # need to set it to false if you want to make the model causal
# Sub-sampling params
subsampling: stacking # stacking, vggnet or striding
subsampling_factor: 4
subsampling_conv_channels: -1 # set to -1 to make it equal to the d_model
### regularization
dropout: 0.2 # The dropout used in most of the Conformer Modules
decoder:
_target_: nemo.collections.asr.modules.RNNTDecoder
normalization_mode: null # Currently only null is supported for export.
random_state_sampling: false # Random state sampling: https://arxiv.org/pdf/1910.11455.pdf
blank_as_pad: true # This flag must be set in order to support exporting of RNNT models + efficient inference.
prednet:
pred_hidden: ${model.model_defaults.pred_hidden}
pred_rnn_layers: 2
t_max: null
dropout: 0.2
rnn_hidden_size: 2048
joint:
_target_: nemo.collections.asr.modules.RNNTJoint
log_softmax: null # 'null' would set it automatically according to CPU/GPU device
preserve_memory: false # dramatically slows down training, but might preserve some memory
# Fuses the computation of prediction net + joint net + loss + WER calculation
# to be run on sub-batches of size `fused_batch_size`.
# When this flag is set to true, consider the `batch_size` of *_ds to be just `encoder` batch size.
# `fused_batch_size` is the actual batch size of the prediction net, joint net and transducer loss.
# Using small values here will preserve a lot of memory during training, but will make training slower as well.
# An optimal ratio of fused_batch_size : *_ds.batch_size is 1:1.
# However, to preserve memory, this ratio can be 1:8 or even 1:16.
# Extreme case of 1:B (i.e. fused_batch_size=1) should be avoided as training speed would be very slow.
fuse_loss_wer: true
fused_batch_size: 4
jointnet:
joint_hidden: ${model.model_defaults.joint_hidden}
activation: "relu"
dropout: 0.2
decoding:
strategy: "greedy_batch" # can be greedy, greedy_batch, beam, tsd, alsd.
# greedy strategy config
greedy:
max_symbols: 10
# beam strategy config
beam:
beam_size: 2
return_best_hypothesis: False
score_norm: true
tsd_max_sym_exp: 50 # for Time Synchronous Decoding
alsd_max_target_len: 2.0 # for Alignment-Length Synchronous Decoding
loss:
loss_name: "default"
warprnnt_numba_kwargs:
# FastEmit regularization: https://arxiv.org/abs/2010.11148
# You may enable FastEmit to reduce the latency of the model for streaming
# using fastemit_lambda=1e-3 can help the accuracy of the model when it is unidirectional
fastemit_lambda: 0.0 # Recommended values to be in range [1e-4, 1e-2], 0.001 is a good start.
optim:
name: adamw
lr: 5.0
# optimizer arguments
betas: [0.9, 0.98]
weight_decay: 1e-2
# scheduler setup
sched:
name: NoamAnnealing
d_model: ${model.encoder.d_model}
# scheduler config override
warmup_steps: 10000
warmup_ratio: null
min_lr: 1e-6
trainer:
devices: -1 # number of GPUs, -1 would use all available GPUs
num_nodes: 1
max_epochs: 500
max_steps: -1 # computed at runtime if not set
val_check_interval: 1.0 # Set to 0.25 to check 4 times per epoch, or an int for number of iterations
accelerator: auto
strategy: ddp
accumulate_grad_batches: 1
gradient_clip_val: 0.3
precision: 32 # 16, 32, or bf16
log_every_n_steps: 10 # Interval of logging.
enable_progress_bar: True
num_sanity_val_steps: 0 # number of steps to perform validation steps for sanity check the validation process before starting the training, setting to 0 disables it
check_val_every_n_epoch: 1 # number of evaluations on validation every n epochs
sync_batchnorm: true
enable_checkpointing: False # Provided by exp_manager
logger: false # Provided by exp_manager
benchmark: false # needs to be false for models with variable-length speech input as it slows down training
exp_manager:
exp_dir: null
name: ${name}
create_tensorboard_logger: true
create_checkpoint_callback: true
checkpoint_callback_params:
# in case of multiple validation sets, first one is used
monitor: "val_wer"
mode: "min"
save_top_k: 5
always_save_nemo: True # saves the checkpoints as nemo files instead of PTL checkpoints
resume_from_checkpoint: null # The path to a checkpoint file to continue the training, restores the whole state including the epoch, step, LR schedulers, apex, etc.
# you need to set these two to True to continue the training
resume_if_exists: false
resume_ignore_no_checkpoint: false
# You may use this section to create a W&B logger
create_wandb_logger: false
wandb_logger_kwargs:
name: null
project: null
|