File size: 8,237 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# It contains the default values for training an LSTM-Transducer ASR model, large size (~170M for bidirectional and ~130M for unidirectional) with Transducer loss and sub-word encoding.

# Architecture and training config:
# Default learning parameters in this config are set for effective batch size of 2K. To train it with smaller effective
# batch sizes, you may need to re-tune the learning parameters or use higher accumulate_grad_batches.

# Followed the architecture suggested in the following paper:
# 'STREAMING END-TO-END SPEECH RECOGNITION FOR MOBILE DEVICES' by Yanzhang He et al. (https://arxiv.org/pdf/1811.06621.pdf)

# You may find more info about LSTM-Transducer here: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/models.html#lstm-transducer
# Pre-trained models of LSTM-Transducer can be found here: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/results.html

name: "LSTM-Transducer-BPE"

model:
  sample_rate: 16000
  compute_eval_loss: false # eval samples can be very long and exhaust memory. Disable computation of transducer loss during validation/testing with this flag.
  log_prediction: true # enables logging sample predictions in the output during training
  skip_nan_grad: false

  model_defaults:
    enc_hidden: 640
    pred_hidden: 640
    joint_hidden: 640
    rnn_hidden_size: 2048

  train_ds:
    manifest_filepath: ???
    sample_rate: ${model.sample_rate}
    batch_size: 16 # you may increase batch_size if your memory allows
    shuffle: true
    num_workers: 4
    pin_memory: true
    max_duration: 16.7 # it is set for LibriSpeech, you may need to update it for your dataset
    min_duration: 0.1
    # tarred datasets
    is_tarred: false
    tarred_audio_filepaths: null
    shuffle_n: 2048
    # bucketing params
    bucketing_strategy: "synced_randomized"
    bucketing_batch_size: null

  validation_ds:
    manifest_filepath: ???
    sample_rate: ${model.sample_rate}
    batch_size: 16
    shuffle: false
    num_workers: 4
    pin_memory: true

  test_ds:
    manifest_filepath: null
    sample_rate: ${model.sample_rate}
    batch_size: 16
    shuffle: false
    num_workers: 4
    pin_memory: true

  # You may find more detail on how to train a tokenizer at: /scripts/tokenizers/process_asr_text_tokenizer.py
  tokenizer:
    dir: ???  # path to directory which contains either tokenizer.model (bpe) or vocab.txt (for wpe)
    type: bpe  # Can be either bpe (SentencePiece tokenizer) or wpe (WordPiece tokenizer)

  preprocessor:
    _target_: nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor
    sample_rate: ${model.sample_rate}
    normalize: "per_feature"
    window_size: 0.025
    window_stride: 0.01
    window: "hann"
    features: 80
    n_fft: 512
    frame_splicing: 1
    dither: 0.00001
    pad_to: 0

  spec_augment:
    _target_: nemo.collections.asr.modules.SpectrogramAugmentation
    freq_masks: 2 # set to zero to disable it
    time_masks: 10 # set to zero to disable it
    freq_width: 27
    time_width: 0.05

  encoder:
    _target_: nemo.collections.asr.modules.RNNEncoder
    feat_in: ${model.preprocessor.features}
    n_layers: 8
    d_model: 2048
    proj_size: ${model.model_defaults.pred_hidden} # you may set it if you need different output size other than the default d_model
    rnn_type: "lstm" # it can be lstm, gru or rnn
    bidirectional: true # need to set it to false if you want to make the model causal

    # Sub-sampling params
    subsampling: stacking # stacking, vggnet or striding
    subsampling_factor: 4
    subsampling_conv_channels: -1 # set to -1 to make it equal to the d_model

    ### regularization
    dropout: 0.2 # The dropout used in most of the Conformer Modules

  decoder:
    _target_: nemo.collections.asr.modules.RNNTDecoder
    normalization_mode: null # Currently only null is supported for export.
    random_state_sampling: false # Random state sampling: https://arxiv.org/pdf/1910.11455.pdf
    blank_as_pad: true # This flag must be set in order to support exporting of RNNT models + efficient inference.

    prednet:
      pred_hidden: ${model.model_defaults.pred_hidden}
      pred_rnn_layers: 2
      t_max: null
      dropout: 0.2
      rnn_hidden_size: 2048

  joint:
    _target_: nemo.collections.asr.modules.RNNTJoint
    log_softmax: null  # 'null' would set it automatically according to CPU/GPU device
    preserve_memory: false  # dramatically slows down training, but might preserve some memory

    # Fuses the computation of prediction net + joint net + loss + WER calculation
    # to be run on sub-batches of size `fused_batch_size`.
    # When this flag is set to true, consider the `batch_size` of *_ds to be just `encoder` batch size.
    # `fused_batch_size` is the actual batch size of the prediction net, joint net and transducer loss.
    # Using small values here will preserve a lot of memory during training, but will make training slower as well.
    # An optimal ratio of fused_batch_size : *_ds.batch_size is 1:1.
    # However, to preserve memory, this ratio can be 1:8 or even 1:16.
    # Extreme case of 1:B (i.e. fused_batch_size=1) should be avoided as training speed would be very slow.
    fuse_loss_wer: true
    fused_batch_size: 4

    jointnet:
      joint_hidden: ${model.model_defaults.joint_hidden}
      activation: "relu"
      dropout: 0.2

  decoding:
    strategy: "greedy_batch" # can be greedy, greedy_batch, beam, tsd, alsd.

    # greedy strategy config
    greedy:
      max_symbols: 10

    # beam strategy config
    beam:
      beam_size: 2
      return_best_hypothesis: False
      score_norm: true
      tsd_max_sym_exp: 50  # for Time Synchronous Decoding
      alsd_max_target_len: 2.0  # for Alignment-Length Synchronous Decoding

  loss:
    loss_name: "default"

    warprnnt_numba_kwargs:
      # FastEmit regularization: https://arxiv.org/abs/2010.11148
      # You may enable FastEmit to reduce the latency of the model for streaming
      # using fastemit_lambda=1e-3 can help the accuracy of the model when it is unidirectional
      fastemit_lambda: 0.0  # Recommended values to be in range [1e-4, 1e-2], 0.001 is a good start.

  optim:
    name: adamw
    lr: 5.0
    # optimizer arguments
    betas: [0.9, 0.98]
    weight_decay: 1e-2

    # scheduler setup
    sched:
      name: NoamAnnealing
      d_model: ${model.encoder.d_model}
      # scheduler config override
      warmup_steps: 10000
      warmup_ratio: null
      min_lr: 1e-6

trainer:
  devices: -1 # number of GPUs, -1 would use all available GPUs
  num_nodes: 1
  max_epochs: 500
  max_steps: -1 # computed at runtime if not set
  val_check_interval: 1.0 # Set to 0.25 to check 4 times per epoch, or an int for number of iterations
  accelerator: auto
  strategy: ddp
  accumulate_grad_batches: 1
  gradient_clip_val: 0.3
  precision: 32 # 16, 32, or bf16
  log_every_n_steps: 10  # Interval of logging.
  enable_progress_bar: True
  num_sanity_val_steps: 0 # number of steps to perform validation steps for sanity check the validation process before starting the training, setting to 0 disables it
  check_val_every_n_epoch: 1 # number of evaluations on validation every n epochs
  sync_batchnorm: true
  enable_checkpointing: False  # Provided by exp_manager
  logger: false  # Provided by exp_manager
  benchmark: false # needs to be false for models with variable-length speech input as it slows down training


exp_manager:
  exp_dir: null
  name: ${name}
  create_tensorboard_logger: true
  create_checkpoint_callback: true
  checkpoint_callback_params:
    # in case of multiple validation sets, first one is used
    monitor: "val_wer"
    mode: "min"
    save_top_k: 5
    always_save_nemo: True # saves the checkpoints as nemo files instead of PTL checkpoints

  resume_from_checkpoint: null # The path to a checkpoint file to continue the training, restores the whole state including the epoch, step, LR schedulers, apex, etc.
  # you need to set these two to True to continue the training
  resume_if_exists: false
  resume_ignore_no_checkpoint: false

  # You may use this section to create a W&B logger
  create_wandb_logger: false
  wandb_logger_kwargs:
    name: null
    project: null