Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
from sklearn import neighbors
|
| 4 |
+
|
| 5 |
+
def train_and_plot(weights, n_neighbors):
|
| 6 |
+
np.random.seed(0)
|
| 7 |
+
X = np.sort(5 * np.random.rand(40, 1), axis=0)
|
| 8 |
+
T = np.linspace(0, 5, 500)[:, np.newaxis]
|
| 9 |
+
y = np.sin(X).ravel()
|
| 10 |
+
|
| 11 |
+
# Add noise to targets
|
| 12 |
+
y[::5] += 1 * (0.5 - np.random.rand(8))
|
| 13 |
+
|
| 14 |
+
knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
|
| 15 |
+
fit = knn.fit(X, y)
|
| 16 |
+
y_ = knn.predict(T)
|
| 17 |
+
score = knn.score(T, y_)
|
| 18 |
+
|
| 19 |
+
plt.scatter(X, y, color="darkorange", label="data")
|
| 20 |
+
plt.plot(T, y_, color="navy", label="prediction")
|
| 21 |
+
plt.axis("tight")
|
| 22 |
+
plt.legend()
|
| 23 |
+
plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights))
|
| 24 |
+
|
| 25 |
+
plt.tight_layout()
|
| 26 |
+
return plt, score
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
with gr.Blocks() as demo:
|
| 30 |
+
link = "https://scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html#sphx-glr-auto-examples-neighbors-plot-regression-py"
|
| 31 |
+
gr.Markdown("## Nearest Neighbors regression")
|
| 32 |
+
gr.Markdown(f"This demo is based on this [scikit-learn example]({link}).")
|
| 33 |
+
gr.HTML("<hr>")
|
| 34 |
+
gr.Markdown("In this demo, we learn a noise-infused sine function using k-Nearest Neighbor and observe how the function learned varies as we change the following hyperparameters:")
|
| 35 |
+
gr.Markdown("""1. Weight function
|
| 36 |
+
2. Number of neighbors""")
|
| 37 |
+
|
| 38 |
+
with gr.Row():
|
| 39 |
+
weights = gr.Radio(['uniform', "distance"], label="Weights", info="Choose the weight function")
|
| 40 |
+
n_neighbors = gr.Slider(label="Neighbors", info="Choose the number of neighbors", minimum =1, maximum=15, step=1)
|
| 41 |
+
|
| 42 |
+
btn = gr.Button(value="Submit")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
with gr.Row():
|
| 46 |
+
with gr.Column(scale=3):
|
| 47 |
+
plot = gr.Plot(label="KNeighborsRegressor Plot")
|
| 48 |
+
with gr.Column(scale=1):
|
| 49 |
+
num = gr.Textbox(label="Test Accuracy")
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
btn.click(train_and_plot, inputs=[weights, n_neighbors], outputs=[plot, num])
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
demo.launch()
|