File size: 582 Bytes
b9555e4 d10b0e3 5475c9a aee9f3b d10b0e3 7432d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
import gradio as gr
from gradio_client import Client
import time
def transcribe(audio, state=""):
client = Client( "abidlabs/whisper")
time.sleep(2)
text = client.predict(audio, api_name = '/predict')
state += text + " "
return state, state
with gr.Blocks() as demo:
state = gr.State(value="")
with gr.Row():
with gr.Column():
audio = gr.Audio(source="microphone", type="filepath")
with gr.Column():
textbox = gr.Textbox()
audio.stream(fn=transcribe, inputs=[audio, state], outputs=[textbox, state])
demo.launch(debug=True) |