Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,6 @@ import cv2
|
|
| 15 |
|
| 16 |
from transformers import (
|
| 17 |
Qwen2_5_VLForConditionalGeneration,
|
| 18 |
-
Qwen2VLForConditionalGeneration,
|
| 19 |
AutoProcessor,
|
| 20 |
AutoTokenizer,
|
| 21 |
TextIteratorStreamer,
|
|
@@ -34,7 +33,7 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
| 34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 35 |
|
| 36 |
# Load typhoon
|
| 37 |
-
MODEL_ID_M = "
|
| 38 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 39 |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 40 |
MODEL_ID_M,
|
|
@@ -42,17 +41,8 @@ model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 42 |
torch_dtype=torch.float16
|
| 43 |
).to(device).eval()
|
| 44 |
|
| 45 |
-
# Load DocScope
|
| 46 |
-
MODEL_ID_X = "prithivMLmods/coreOCR-7B-050325-preview"
|
| 47 |
-
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 48 |
-
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 49 |
-
MODEL_ID_X,
|
| 50 |
-
trust_remote_code=True,
|
| 51 |
-
torch_dtype=torch.float16
|
| 52 |
-
).to(device).eval()
|
| 53 |
-
|
| 54 |
# Load Space Thinker
|
| 55 |
-
MODEL_ID_Z = "
|
| 56 |
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
| 57 |
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 58 |
MODEL_ID_Z,
|
|
@@ -60,15 +50,6 @@ model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 60 |
torch_dtype=torch.float16
|
| 61 |
).to(device).eval()
|
| 62 |
|
| 63 |
-
# Load Qwen2-VL-7B-Instruct
|
| 64 |
-
MODEL_ID_T = "Qwen/Qwen2-VL-7B-Instruct"
|
| 65 |
-
processor_t = AutoTokenizer.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 66 |
-
model_t = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 67 |
-
MODEL_ID_T,
|
| 68 |
-
trust_remote_code=True,
|
| 69 |
-
torch_dtype=torch.float16
|
| 70 |
-
).to(device).eval()
|
| 71 |
-
|
| 72 |
|
| 73 |
|
| 74 |
def downsample_video(video_path):
|
|
@@ -102,18 +83,12 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 102 |
"""
|
| 103 |
Generates responses using the selected model for image input.
|
| 104 |
"""
|
| 105 |
-
if model_name == "
|
| 106 |
processor = processor_m
|
| 107 |
model = model_m
|
| 108 |
-
elif model_name == "
|
| 109 |
-
processor = processor_x
|
| 110 |
-
model = model_x
|
| 111 |
-
elif model_name == "SpaceThinker-Qwen2.5VL-3B":
|
| 112 |
processor = processor_z
|
| 113 |
model = model_z
|
| 114 |
-
elif model_name == "Qwen2-VL-7B-Instruct":
|
| 115 |
-
processor = processor_t
|
| 116 |
-
model = model_t
|
| 117 |
else:
|
| 118 |
yield "Invalid model selected."
|
| 119 |
return
|
|
@@ -158,18 +133,12 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 158 |
"""
|
| 159 |
Generates responses using the selected model for video input.
|
| 160 |
"""
|
| 161 |
-
if model_name == "
|
| 162 |
processor = processor_m
|
| 163 |
model = model_m
|
| 164 |
-
elif model_name == "
|
| 165 |
-
processor = processor_x
|
| 166 |
-
model = model_x
|
| 167 |
-
elif model_name == "SpaceThinker-Qwen2.5VL-3B":
|
| 168 |
processor = processor_z
|
| 169 |
model = model_z
|
| 170 |
-
elif model_name == "Qwen2-VL-7B-Instruct":
|
| 171 |
-
processor = processor_t
|
| 172 |
-
model = model_t
|
| 173 |
else:
|
| 174 |
yield "Invalid model selected."
|
| 175 |
return
|
|
@@ -270,9 +239,9 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 270 |
with gr.Column():
|
| 271 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
| 272 |
model_choice = gr.Radio(
|
| 273 |
-
choices=["
|
| 274 |
label="Select Model",
|
| 275 |
-
value="
|
| 276 |
)
|
| 277 |
|
| 278 |
image_submit.click(
|
|
@@ -287,4 +256,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 287 |
)
|
| 288 |
|
| 289 |
if __name__ == "__main__":
|
| 290 |
-
demo.queue(max_size=
|
|
|
|
| 15 |
|
| 16 |
from transformers import (
|
| 17 |
Qwen2_5_VLForConditionalGeneration,
|
|
|
|
| 18 |
AutoProcessor,
|
| 19 |
AutoTokenizer,
|
| 20 |
TextIteratorStreamer,
|
|
|
|
| 33 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 34 |
|
| 35 |
# Load typhoon
|
| 36 |
+
MODEL_ID_M = "Qwen/Qwen2.5-VL-3B-Instruct"
|
| 37 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 38 |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 39 |
MODEL_ID_M,
|
|
|
|
| 41 |
torch_dtype=torch.float16
|
| 42 |
).to(device).eval()
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
# Load Space Thinker
|
| 45 |
+
MODEL_ID_Z = "One-RL-to-See-Them-All/Orsta-32B-0326"
|
| 46 |
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
| 47 |
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 48 |
MODEL_ID_Z,
|
|
|
|
| 50 |
torch_dtype=torch.float16
|
| 51 |
).to(device).eval()
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
def downsample_video(video_path):
|
|
|
|
| 83 |
"""
|
| 84 |
Generates responses using the selected model for image input.
|
| 85 |
"""
|
| 86 |
+
if model_name == "Qwen2.5-VL-3B":
|
| 87 |
processor = processor_m
|
| 88 |
model = model_m
|
| 89 |
+
elif model_name == "Orsta-32B-0326":
|
|
|
|
|
|
|
|
|
|
| 90 |
processor = processor_z
|
| 91 |
model = model_z
|
|
|
|
|
|
|
|
|
|
| 92 |
else:
|
| 93 |
yield "Invalid model selected."
|
| 94 |
return
|
|
|
|
| 133 |
"""
|
| 134 |
Generates responses using the selected model for video input.
|
| 135 |
"""
|
| 136 |
+
if model_name == "Qwen2.5-VL-3B":
|
| 137 |
processor = processor_m
|
| 138 |
model = model_m
|
| 139 |
+
elif model_name == "Orsta-32B-0326":
|
|
|
|
|
|
|
|
|
|
| 140 |
processor = processor_z
|
| 141 |
model = model_z
|
|
|
|
|
|
|
|
|
|
| 142 |
else:
|
| 143 |
yield "Invalid model selected."
|
| 144 |
return
|
|
|
|
| 239 |
with gr.Column():
|
| 240 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
| 241 |
model_choice = gr.Radio(
|
| 242 |
+
choices=["Qwen2.5-VL-3B", "Orsta-32B-0326"],
|
| 243 |
label="Select Model",
|
| 244 |
+
value="Orsta-32B-0326"
|
| 245 |
)
|
| 246 |
|
| 247 |
image_submit.click(
|
|
|
|
| 256 |
)
|
| 257 |
|
| 258 |
if __name__ == "__main__":
|
| 259 |
+
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|