Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| import re | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import edge_tts | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| TextIteratorStreamer, | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| ) | |
| from transformers.image_utils import load_image | |
| from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
| DESCRIPTION = """ | |
| # SDXL LoRA DLC π | |
| """ | |
| css = ''' | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| #duplicate-button { | |
| margin: auto; | |
| color: #fff; | |
| background: #1565c0; | |
| border-radius: 100vh; | |
| } | |
| ''' | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # ----------------------- | |
| # Progress Bar Helper | |
| # ----------------------- | |
| def progress_bar_html(label: str) -> str: | |
| """ | |
| Returns an HTML snippet for a thin progress bar with a label. | |
| The progress bar is styled as a dark red animated bar. | |
| """ | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: #DDA0DD; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: #FF00FF; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| # ----------------------- | |
| # Text Generation Setup | |
| # ----------------------- | |
| model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| model.eval() | |
| TTS_VOICES = [ | |
| "en-US-JennyNeural", # @tts1 | |
| "en-US-GuyNeural", # @tts2 | |
| ] | |
| # ----------------------- | |
| # Multimodal OCR Setup | |
| # ----------------------- | |
| MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
| """Convert text to speech using Edge TTS and save as MP3""" | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_file) | |
| return output_file | |
| def clean_chat_history(chat_history): | |
| """ | |
| Filter out any chat entries whose "content" is not a string. | |
| """ | |
| cleaned = [] | |
| for msg in chat_history: | |
| if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
| cleaned.append(msg) | |
| return cleaned | |
| # ----------------------- | |
| # Stable Diffusion Image Generation Setup | |
| # ----------------------- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| USE_TORCH_COMPILE = False | |
| ENABLE_CPU_OFFLOAD = False | |
| if torch.cuda.is_available(): | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V4.0_Lightning", | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| ) | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| # LoRA options with one example for each. | |
| LORA_OPTIONS = { | |
| "Realism": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"), | |
| "Pixar": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"), | |
| "Photoshoot": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"), | |
| "Clothing": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"), | |
| "Interior": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1Ξ΄.safetensors", "arch"), | |
| "Fashion": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"), | |
| "Minimalistic": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"), | |
| "Modern": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"), | |
| "Animaliea": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"), | |
| "Wallpaper": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"), | |
| "Cars": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"), | |
| "PencilArt": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"), | |
| "ArtMinimalistic": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"), | |
| } | |
| # Load all LoRA weights | |
| for model_name, weight_name, adapter_name in LORA_OPTIONS.values(): | |
| pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name) | |
| pipe.to("cuda") | |
| else: | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V4.0_Lightning", | |
| torch_dtype=torch.float32, | |
| use_safetensors=True, | |
| ).to(device) | |
| def save_image(img: Image.Image) -> str: | |
| """Save a PIL image with a unique filename and return the path.""" | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def generate_image( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 3.0, | |
| randomize_seed: bool = True, | |
| lora_model: str = "Realism", | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| effective_negative_prompt = negative_prompt # Use provided negative prompt if any | |
| model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model] | |
| pipe.set_adapters(adapter_name) | |
| outputs = pipe( | |
| prompt=prompt, | |
| negative_prompt=effective_negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=28, | |
| num_images_per_prompt=1, | |
| cross_attention_kwargs={"scale": 0.65}, | |
| output_type="pil", | |
| ) | |
| images = outputs.images | |
| image_paths = [save_image(img) for img in images] | |
| return image_paths, seed | |
| # ----------------------- | |
| # Main Chat/Generation Function | |
| # ----------------------- | |
| def generate( | |
| input_dict: dict, | |
| chat_history: list[dict], | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ): | |
| """ | |
| Generates chatbot responses with support for multimodal input, TTS, and image generation. | |
| Special commands: | |
| - "@tts1" or "@tts2": triggers text-to-speech. | |
| - "@<lora_command>": triggers image generation using the new LoRA pipeline. | |
| Available commands (case-insensitive): @realism, @pixar, @photoshoot, @clothing, @interior, @fashion, | |
| @minimalistic, @modern, @animaliea, @wallpaper, @cars, @pencilart, @artminimalistic. | |
| """ | |
| text = input_dict["text"] | |
| files = input_dict.get("files", []) | |
| # Check for image generation command based on LoRA tags. | |
| lora_mapping = { key.lower(): key for key in LORA_OPTIONS } | |
| for key_lower, key in lora_mapping.items(): | |
| command_tag = "@" + key_lower | |
| if text.strip().lower().startswith(command_tag): | |
| prompt_text = text.strip()[len(command_tag):].strip() | |
| yield progress_bar_html(f"Processing Image Generation ({key} style)") | |
| image_paths, used_seed = generate_image( | |
| prompt=prompt_text, | |
| negative_prompt="", | |
| seed=1, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=3, | |
| randomize_seed=True, | |
| lora_model=key, | |
| ) | |
| yield progress_bar_html("Finalizing Image Generation") | |
| yield gr.Image(image_paths[0]) | |
| return | |
| # Check for TTS command (@tts1 or @tts2) | |
| tts_prefix = "@tts" | |
| is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) | |
| voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
| if is_tts and voice_index: | |
| voice = TTS_VOICES[voice_index - 1] | |
| text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
| conversation = [{"role": "user", "content": text}] | |
| else: | |
| voice = None | |
| text = text.replace(tts_prefix, "").strip() | |
| conversation = clean_chat_history(chat_history) | |
| conversation.append({"role": "user", "content": text}) | |
| if files: | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing with Qwen2VL Ocr") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| else: | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| "input_ids": input_ids, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "temperature": temperature, | |
| "num_beams": 1, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| t = Thread(target=model.generate, kwargs=generation_kwargs) | |
| t.start() | |
| outputs = [] | |
| for new_text in streamer: | |
| outputs.append(new_text) | |
| yield "".join(outputs) | |
| final_response = "".join(outputs) | |
| yield final_response | |
| if is_tts and voice: | |
| output_file = asyncio.run(text_to_speech(final_response, voice)) | |
| yield gr.Audio(output_file, autoplay=True) | |
| # ----------------------- | |
| # Gradio Chat Interface | |
| # ----------------------- | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
| gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
| gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
| ], | |
| examples=[ | |
| ['@realism Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic'], | |
| ["@pixar A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man"], | |
| ["@realism A futuristic cityscape with neon lights"], | |
| ["@photoshoot A portrait of a person with dramatic lighting"], | |
| [{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
| ["Python Program for Array Rotation"], | |
| ["@tts1 Who is Nikola Tesla, and why did he die?"], | |
| ["@clothing Fashionable streetwear in an urban environment"], | |
| ["@interior A modern living room interior with minimalist design"], | |
| ["@fashion A runway model in haute couture"], | |
| ["@minimalistic A simple and elegant design of a serene landscape"], | |
| ["@modern A contemporary art piece with abstract geometric shapes"], | |
| ["@animaliea A cute animal portrait with vibrant colors"], | |
| ["@wallpaper A scenic mountain range perfect for a desktop wallpaper"], | |
| ["@cars A sleek sports car cruising on a city street"], | |
| ["@pencilart A detailed pencil sketch of a historic building"], | |
| ["@artminimalistic An artistic minimalist composition with subtle tones"], | |
| ["@tts2 What causes rainbows to form?"], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| description=DESCRIPTION, | |
| css=css, | |
| fill_height=True, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple", placeholder="default [text, vision] , scroll down examples to explore more art styles"), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(ssr_mode=False, share=True) |