Commit
Β·
1f561dd
1
Parent(s):
7a12c31
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
word_embedding_model = models.Transformer('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
|
| 2 |
+
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
|
| 3 |
+
pooling_mode_mean_tokens=True,
|
| 4 |
+
pooling_mode_cls_token=False,
|
| 5 |
+
pooling_mode_max_tokens=False)
|
| 6 |
+
|
| 7 |
+
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
|
| 8 |
+
|
| 9 |
+
def search(query):
|
| 10 |
+
Entrez.email = '[email protected]'
|
| 11 |
+
handle = Entrez.esearch(db='pubmed',
|
| 12 |
+
sort='relevance',
|
| 13 |
+
retmax='5',
|
| 14 |
+
retmode='xml',
|
| 15 |
+
term=query)
|
| 16 |
+
results = Entrez.read(handle)
|
| 17 |
+
return results
|
| 18 |
+
|
| 19 |
+
def fetch_details(id_list):
|
| 20 |
+
ids = ','.join(id_list)
|
| 21 |
+
Entrez.email = '[email protected]'
|
| 22 |
+
|
| 23 |
+
handle_1 = Entrez.efetch(db='pubmed', retmode='xml', id=ids)
|
| 24 |
+
results_1 = Entrez.read(handle_1)
|
| 25 |
+
return results_1
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def remove_stopwords(sen):
|
| 29 |
+
sen_new = " ".join([i for i in sen if i not in stop_words])
|
| 30 |
+
return sen_new
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
|
| 35 |
+
element=[]
|
| 36 |
+
final_textrank_list=[]
|
| 37 |
+
document=[]
|
| 38 |
+
text_doc=[]
|
| 39 |
+
final_list=[]
|
| 40 |
+
score_list=[]
|
| 41 |
+
sum_list=[]
|
| 42 |
+
model_1 = SentenceTransformer(model_1)
|
| 43 |
+
model_2 = SentenceTransformer(model_2)
|
| 44 |
+
url = article_link
|
| 45 |
+
if (url == False):
|
| 46 |
+
print("error")
|
| 47 |
+
html = requests.get(url).text
|
| 48 |
+
article = fulltext(html)
|
| 49 |
+
corpus=sent_tokenize(article)
|
| 50 |
+
indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
|
| 51 |
+
'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
|
| 52 |
+
'indicated that','suggested that','demonstrated that']
|
| 53 |
+
count_dict={}
|
| 54 |
+
for l in corpus:
|
| 55 |
+
c=0
|
| 56 |
+
for l2 in indicator_list:
|
| 57 |
+
if l.find(l2)!=-1:#then it is a substring
|
| 58 |
+
c=1
|
| 59 |
+
break
|
| 60 |
+
if c:#
|
| 61 |
+
count_dict[l]=1
|
| 62 |
+
else:
|
| 63 |
+
count_dict[l]=0
|
| 64 |
+
for sent, score in count_dict.items():
|
| 65 |
+
score_list.append(score)
|
| 66 |
+
clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ").tolist()
|
| 67 |
+
corpus_embeddings = model_1.encode(clean_sentences_new)
|
| 68 |
+
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
|
| 69 |
+
for i in range(len(clean_sentences_new)):
|
| 70 |
+
len_embeddings=(len(corpus_embeddings[i]))
|
| 71 |
+
for j in range(len(clean_sentences_new)):
|
| 72 |
+
if i != j:
|
| 73 |
+
if(len_embeddings == 1024):
|
| 74 |
+
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
|
| 75 |
+
elif(len_embeddings == 768):
|
| 76 |
+
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
|
| 77 |
+
nx_graph = nx.from_numpy_array(sim_mat)
|
| 78 |
+
scores = nx.pagerank(nx_graph)
|
| 79 |
+
sentences=((scores[i],s) for i,s in enumerate(corpus))
|
| 80 |
+
for elem in sentences:
|
| 81 |
+
element.append(elem[0])
|
| 82 |
+
for sc, lst in zip(score_list, element): ########## taking the scores from both the lists
|
| 83 |
+
sum1=sc+lst
|
| 84 |
+
sum_list.append(sum1)
|
| 85 |
+
x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
|
| 86 |
+
for elem in x:
|
| 87 |
+
final_textrank_list.append(elem[1])
|
| 88 |
+
|
| 89 |
+
a=int((10*len(final_textrank_list))/100.0)
|
| 90 |
+
if(a<5):
|
| 91 |
+
total=5
|
| 92 |
+
else:
|
| 93 |
+
total=int(a)
|
| 94 |
+
for i in range(total):
|
| 95 |
+
document.append(final_textrank_list[i])
|
| 96 |
+
doc=" ".join(document)
|
| 97 |
+
for i in document:
|
| 98 |
+
doc_1=nlp(i)
|
| 99 |
+
text_doc.append([X.text for X in doc_1.ents])
|
| 100 |
+
entity_list = [item for sublist in text_doc for item in sublist]
|
| 101 |
+
entity_list = [word for word in entity_list if not word in all_stopwords]
|
| 102 |
+
entity_list = [word_entity for word_entity in entity_list if(p.singular_noun(word_entity) == False)]
|
| 103 |
+
entity_list=list(dict.fromkeys(entity_list))
|
| 104 |
+
doc_embedding = model_2.encode([doc])
|
| 105 |
+
candidates=entity_list
|
| 106 |
+
candidate_embeddings = model_2.encode(candidates)
|
| 107 |
+
distances = cosine_similarity(doc_embedding, candidate_embeddings)
|
| 108 |
+
top_n = max_num_keywords
|
| 109 |
+
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
|
| 110 |
+
keywords = '\n'.join(keyword_list)
|
| 111 |
+
|
| 112 |
+
c_len=(len(keyword_list))
|
| 113 |
+
keyword_embeddings = embedder.encode(keyword_list)
|
| 114 |
+
data_embeddings = embedder.encode(keyword_list)
|
| 115 |
+
|
| 116 |
+
for num_clusters in range(1, top_n):
|
| 117 |
+
clustering_model = KMeans(n_clusters=num_clusters)
|
| 118 |
+
clustering_model.fit(keyword_embeddings)
|
| 119 |
+
cluster_assignment = clustering_model.labels_
|
| 120 |
+
clustered_sentences = [[] for i in range(num_clusters)]
|
| 121 |
+
for sentence_id, cluster_id in enumerate(cluster_assignment):
|
| 122 |
+
clustered_sentences[cluster_id].append(keyword_list[sentence_id])
|
| 123 |
+
cl_sent_len=(len(clustered_sentences))
|
| 124 |
+
list_cluster=list(clustered_sentences)
|
| 125 |
+
a=len(list_cluster)
|
| 126 |
+
cluster_list_final.append(list_cluster)
|
| 127 |
+
if (c_len==cl_sent_len and c_len>=3) or cl_sent_len==1:
|
| 128 |
+
silhouette_avg = 0
|
| 129 |
+
silhouette_score_list.append(silhouette_avg)
|
| 130 |
+
elif c_len==cl_sent_len==2:
|
| 131 |
+
silhouette_avg = 1
|
| 132 |
+
silhouette_score_list.append(silhouette_avg)
|
| 133 |
+
else:
|
| 134 |
+
silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
|
| 135 |
+
silhouette_score_list.append(silhouette_avg)
|
| 136 |
+
res_dict = dict(zip(silhouette_score_list, cluster_list_final))
|
| 137 |
+
cluster_items=res_dict[max(res_dict)]
|
| 138 |
+
|
| 139 |
+
for i in cluster_items:
|
| 140 |
+
z=' OR '.join(i)
|
| 141 |
+
comb.append("("+z+")")
|
| 142 |
+
comb_list.append(comb)
|
| 143 |
+
combinations = []
|
| 144 |
+
for subset in itertools.combinations(comb, 2):
|
| 145 |
+
combinations.append(subset)
|
| 146 |
+
f1_list=[]
|
| 147 |
+
for s in combinations:
|
| 148 |
+
final = ' AND '.join(s)
|
| 149 |
+
f1_list.append("("+final+")")
|
| 150 |
+
f_1=' OR '.join(f1_list)
|
| 151 |
+
final_list.append(f_1)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
#if __name__ == '__main__':
|
| 155 |
+
#for qu in range(len(final_list)):
|
| 156 |
+
results=search(f_1)
|
| 157 |
+
id_list = results['IdList']
|
| 158 |
+
#if(id_list != []):
|
| 159 |
+
papers = fetch_details(id_list)
|
| 160 |
+
abstract_list=[]
|
| 161 |
+
year_list=[]
|
| 162 |
+
journal_list=[]
|
| 163 |
+
title_list=[]
|
| 164 |
+
for i, paper in enumerate(papers['PubmedArticle']):
|
| 165 |
+
x=(json.dumps(papers['PubmedArticle'][i], indent=2))
|
| 166 |
+
t_list=[]
|
| 167 |
+
y = json.loads(x)
|
| 168 |
+
try:
|
| 169 |
+
value_1 = y['MedlineCitation']['Article']['Abstract']['AbstractText']
|
| 170 |
+
value = (y['MedlineCitation']['Article']['ArticleTitle'])
|
| 171 |
+
value_2 = (y['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['Year'])
|
| 172 |
+
value_journal = (y['MedlineCitation']['Article']['Journal']['Title'])
|
| 173 |
+
t_list.append(value)
|
| 174 |
+
title_list.append(t_list)
|
| 175 |
+
year_list.append(value_2)
|
| 176 |
+
abstract_list.append(value_1)
|
| 177 |
+
journal_list.append(value_journal)
|
| 178 |
+
except KeyError:
|
| 179 |
+
value_1 = []
|
| 180 |
+
title_list.append(t_list)
|
| 181 |
+
abstract_list.append(value_1)
|
| 182 |
+
year_list.append(value_2)
|
| 183 |
+
journal_list.append(value_journal)
|
| 184 |
+
mydict={'Title': title_list, 'Abstract':abstract_list, 'Journal Title': journal_list, 'Year': year_list}
|
| 185 |
+
df_new=pd.DataFrame(mydict)
|
| 186 |
+
#print(df_new)
|
| 187 |
+
#else:
|
| 188 |
+
# abstract_list=[]
|
| 189 |
+
# title_list=[]
|
| 190 |
+
# year_list=[]
|
| 191 |
+
# journal_list=[]
|
| 192 |
+
# a=["No result"]
|
| 193 |
+
# b=["No results"]
|
| 194 |
+
# abstract_list.append(a)
|
| 195 |
+
# title_list.append(b)
|
| 196 |
+
# mydict={'Title': title_list, 'Abstract':abstract_list, 'Journal Title': journal_list, 'Year': year_list}
|
| 197 |
+
# df_new=pd.DataFrame(mydict)
|
| 198 |
+
#print(df_new)
|
| 199 |
+
return title_list
|
| 200 |
+
|
| 201 |
+
gr.Interface(keyphrase_generator,
|
| 202 |
+
inputs=[gr.inputs.Textbox(lines=1, placeholder="Provide article web link here",default="", label="Article web link"),
|
| 203 |
+
gr.inputs.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
|
| 204 |
+
'sentence-transformers/all-mpnet-base-v1',
|
| 205 |
+
'sentence-transformers/all-distilroberta-v1',
|
| 206 |
+
'sentence-transformers/gtr-t5-large',
|
| 207 |
+
'pritamdeka/S-Bluebert-snli-multinli-stsb',
|
| 208 |
+
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
|
| 209 |
+
'sentence-transformers/stsb-mpnet-base-v2',
|
| 210 |
+
'sentence-transformers/stsb-roberta-base-v2',
|
| 211 |
+
'sentence-transformers/stsb-distilroberta-base-v2',
|
| 212 |
+
'sentence-transformers/sentence-t5-large',
|
| 213 |
+
'sentence-transformers/sentence-t5-base'],
|
| 214 |
+
type="value",
|
| 215 |
+
default='sentence-transformers/all-mpnet-base-v1',
|
| 216 |
+
label="Select any SBERT model for TextRank from the list below"),
|
| 217 |
+
gr.inputs.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
|
| 218 |
+
'sentence-transformers/all-mpnet-base-v1',
|
| 219 |
+
'sentence-transformers/paraphrase-distilroberta-base-v1',
|
| 220 |
+
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
|
| 221 |
+
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
|
| 222 |
+
'sentence-transformers/paraphrase-albert-small-v2',
|
| 223 |
+
'sentence-transformers/paraphrase-albert-base-v2',
|
| 224 |
+
'sentence-transformers/paraphrase-MiniLM-L12-v2',
|
| 225 |
+
'sentence-transformers/paraphrase-MiniLM-L6-v2',
|
| 226 |
+
'sentence-transformers/all-MiniLM-L12-v2',
|
| 227 |
+
'sentence-transformers/all-distilroberta-v1',
|
| 228 |
+
'sentence-transformers/paraphrase-TinyBERT-L6-v2',
|
| 229 |
+
'sentence-transformers/paraphrase-MiniLM-L3-v2',
|
| 230 |
+
'sentence-transformers/all-MiniLM-L6-v2'],
|
| 231 |
+
type="value",
|
| 232 |
+
default='sentence-transformers/all-mpnet-base-v1',
|
| 233 |
+
label="Select any SBERT model for keyphrases from the list below"),
|
| 234 |
+
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
|
| 235 |
+
outputs=gr.outputs.Textbox(type="auto", label="Stuff"),
|
| 236 |
+
theme="peach",
|
| 237 |
+
title="Scientific Article Keyphrase Generator", description="Generates the keyphrases from an article which best describes the article.",
|
| 238 |
+
article= "The work is based on a part of the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
|
| 239 |
+
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
| 240 |
+
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
|
| 241 |
+
"\t The default model names are provided which can be changed from the list of pretrained models. "
|
| 242 |
+
"\t The value of output keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.").launch(share=True,debug=True)
|