Spaces:
Paused
Paused
Commit
·
ea34ed3
1
Parent(s):
2b46203
take everything that made this app special, and eliminate it
Browse files
app.py
CHANGED
|
@@ -1,84 +1,55 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
from
|
|
|
|
|
|
|
| 4 |
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class Choice:
|
| 12 |
-
def __init__(self, delta):
|
| 13 |
-
self.delta = delta
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
class InferenceClient:
|
| 17 |
-
def __init__(self, model_id="nroggendorff/smallama-it"):
|
| 18 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 19 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 20 |
-
|
| 21 |
-
class ModelOutput:
|
| 22 |
-
def __init__(self, client, inputs):
|
| 23 |
-
self.client = client
|
| 24 |
-
self.inputs = inputs
|
| 25 |
-
self.choices = []
|
| 26 |
-
|
| 27 |
-
def decode(self, output):
|
| 28 |
-
decoded_output = self.client.tokenizer.decode(
|
| 29 |
-
output[0][self.inputs["input_ids"].shape[-1] :],
|
| 30 |
-
skip_special_tokens=True,
|
| 31 |
-
)
|
| 32 |
-
self.choices = [Choice(Delta(decoded_output))]
|
| 33 |
-
return self
|
| 34 |
-
|
| 35 |
-
@gpu
|
| 36 |
-
def chat_completion(
|
| 37 |
-
self, messages, max_tokens=256, stream=True, temperature=0.2, top_p=0.95
|
| 38 |
-
):
|
| 39 |
-
inputs = self.tokenizer.apply_chat_template(
|
| 40 |
-
messages,
|
| 41 |
-
add_generation_prompt=True,
|
| 42 |
-
tokenize=True,
|
| 43 |
-
return_dict=True,
|
| 44 |
-
return_tensors="pt",
|
| 45 |
-
).to(self.model.device)
|
| 46 |
-
|
| 47 |
-
model_output = self.ModelOutput(self, inputs)
|
| 48 |
-
|
| 49 |
-
for _ in range(max_tokens):
|
| 50 |
-
output = self.model.generate(
|
| 51 |
-
**inputs, max_new_tokens=1, temperature=temperature, top_p=top_p
|
| 52 |
-
)
|
| 53 |
-
yield model_output.decode(output)
|
| 54 |
|
| 55 |
|
|
|
|
| 56 |
def respond(
|
| 57 |
message,
|
| 58 |
history: list[dict[str, str]],
|
| 59 |
-
system_message,
|
| 60 |
max_tokens,
|
| 61 |
temperature,
|
| 62 |
top_p,
|
| 63 |
):
|
| 64 |
-
|
| 65 |
-
messages = [{"role": "system", "content": system_message}]
|
| 66 |
-
messages.extend(history)
|
| 67 |
messages.append({"role": "user", "content": message})
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
for message in client.chat_completion(
|
| 72 |
messages,
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
temperature=temperature,
|
| 76 |
top_p=top_p,
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
response += token
|
| 83 |
yield response
|
| 84 |
|
|
@@ -88,7 +59,7 @@ chatbot = gr.ChatInterface(
|
|
| 88 |
type="messages",
|
| 89 |
additional_inputs=[
|
| 90 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 91 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.
|
| 92 |
gr.Slider(
|
| 93 |
minimum=0.1,
|
| 94 |
maximum=1.0,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 4 |
+
from threading import Thread
|
| 5 |
+
import torch
|
| 6 |
|
| 7 |
+
MODEL_ID = "nroggendorff/smallama-it"
|
| 8 |
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
MODEL_ID, dtype=torch.float16, device_map="auto"
|
| 12 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
+
@spaces.GPU
|
| 16 |
def respond(
|
| 17 |
message,
|
| 18 |
history: list[dict[str, str]],
|
|
|
|
| 19 |
max_tokens,
|
| 20 |
temperature,
|
| 21 |
top_p,
|
| 22 |
):
|
| 23 |
+
messages = history
|
|
|
|
|
|
|
| 24 |
messages.append({"role": "user", "content": message})
|
| 25 |
|
| 26 |
+
inputs = tokenizer.apply_chat_template(
|
|
|
|
|
|
|
| 27 |
messages,
|
| 28 |
+
add_generation_prompt=True,
|
| 29 |
+
tokenize=True,
|
| 30 |
+
return_dict=True,
|
| 31 |
+
return_tensors="pt",
|
| 32 |
+
).to(model.device)
|
| 33 |
+
|
| 34 |
+
streamer = TextIteratorStreamer(
|
| 35 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
generation_kwargs = dict(
|
| 39 |
+
input_ids=inputs["input_ids"],
|
| 40 |
+
attention_mask=inputs["attention_mask"],
|
| 41 |
+
max_new_tokens=max_tokens,
|
| 42 |
temperature=temperature,
|
| 43 |
top_p=top_p,
|
| 44 |
+
do_sample=True,
|
| 45 |
+
streamer=streamer,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 49 |
+
thread.start()
|
| 50 |
+
|
| 51 |
+
response = ""
|
| 52 |
+
for token in streamer:
|
| 53 |
response += token
|
| 54 |
yield response
|
| 55 |
|
|
|
|
| 59 |
type="messages",
|
| 60 |
additional_inputs=[
|
| 61 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 62 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 63 |
gr.Slider(
|
| 64 |
minimum=0.1,
|
| 65 |
maximum=1.0,
|