Spaces:
Paused
Paused
| import gradio as gr | |
| import spaces | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
| from threading import Thread | |
| import torch | |
| MODEL_ID = "nroggendorff/smallama-7b-it" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, dtype=torch.float16, device_map="auto" | |
| ) | |
| def respond( | |
| message, | |
| history: list[dict[str, str]], | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = history | |
| messages.append({"role": "user", "content": message}) | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(model.device) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, skip_prompt=True, skip_special_tokens=True | |
| ) | |
| generation_kwargs = dict( | |
| input_ids=inputs["input_ids"], | |
| attention_mask=inputs["attention_mask"], | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True, | |
| streamer=streamer, | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| response = "" | |
| for token in streamer: | |
| response += token | |
| yield response | |
| chatbot = gr.ChatInterface( | |
| respond, | |
| type="messages", | |
| additional_inputs=[ | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.2, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| with gr.Blocks() as demo: | |
| chatbot.render() | |
| if __name__ == "__main__": | |
| demo.launch() | |