smallama / app.py
nroggendorff's picture
initial commit
2b46203
raw
history blame
2.83 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from spaces import GPU as gpu
class Delta:
def __init__(self, content):
self.content = content
class Choice:
def __init__(self, delta):
self.delta = delta
class InferenceClient:
def __init__(self, model_id="nroggendorff/smallama-it"):
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
self.model = AutoModelForCausalLM.from_pretrained(model_id)
class ModelOutput:
def __init__(self, client, inputs):
self.client = client
self.inputs = inputs
self.choices = []
def decode(self, output):
decoded_output = self.client.tokenizer.decode(
output[0][self.inputs["input_ids"].shape[-1] :],
skip_special_tokens=True,
)
self.choices = [Choice(Delta(decoded_output))]
return self
@gpu
def chat_completion(
self, messages, max_tokens=256, stream=True, temperature=0.2, top_p=0.95
):
inputs = self.tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(self.model.device)
model_output = self.ModelOutput(self, inputs)
for _ in range(max_tokens):
output = self.model.generate(
**inputs, max_new_tokens=1, temperature=temperature, top_p=top_p
)
yield model_output.decode(output)
def respond(
message,
history: list[dict[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
client = InferenceClient()
messages = [{"role": "system", "content": system_message}]
messages.extend(history)
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
choices = message.choices
token = ""
if len(choices) and choices[0].delta.content:
token = choices[0].delta.content
response += token
yield response
chatbot = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
with gr.Blocks() as demo:
chatbot.render()
if __name__ == "__main__":
demo.launch()