Spaces:
Runtime error
Runtime error
Commit
·
708d3e0
1
Parent(s):
e654c3a
Delete DecompX/src/globenc_utils.py
Browse files- DecompX/src/globenc_utils.py +0 -49
DecompX/src/globenc_utils.py
DELETED
|
@@ -1,49 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from dataclasses import dataclass
|
| 3 |
-
from typing import List, Optional, Tuple, Union
|
| 4 |
-
|
| 5 |
-
@dataclass
|
| 6 |
-
class GlobencConfig():
|
| 7 |
-
include_biases: Optional[bool] = True
|
| 8 |
-
bias_decomp_type: Optional[str] = "absdot" # "absdot": Based on the absolute value of dot products | "norm": Based on the norm of the attribution vectors | "equal": equal decomposition | "abssim": Based on the absolute value of cosine similarites | "cls": add to cls token
|
| 9 |
-
include_bias_token: Optional[bool] = False # Adds an extra input token as a bias in the attribution vectors
|
| 10 |
-
# If the bias_decomp_type is None and include_bias_token is True then the final token in the input tokens of the attr. vectors will be the summation of the biases
|
| 11 |
-
# Otherwise the bias token will be decomposed with the specified decomp type
|
| 12 |
-
|
| 13 |
-
include_LN1: Optional[bool] = True
|
| 14 |
-
|
| 15 |
-
include_FFN: Optional[bool] = True
|
| 16 |
-
FFN_approx_type: Optional[str] = "GeLU_ZO" # "GeLU_LA": GeLU-based linear approximation | "ReLU": Using ReLU as an approximation | "GeLU_ZO": Zero-origin slope approximation
|
| 17 |
-
FFN_fast_mode: Optional[bool] = False
|
| 18 |
-
|
| 19 |
-
include_LN2: Optional[bool] = True
|
| 20 |
-
|
| 21 |
-
aggregation: Optional[str] = None # None: No aggregation | vector: Vector-based aggregation | rollout: Norm-based rollout aggregation
|
| 22 |
-
|
| 23 |
-
include_classifier_w_pooler: Optional[bool] = True
|
| 24 |
-
tanh_approx_type: Optional[str] = "ZO" # "ZO": Zero-origin slope approximation | "LA": Linear approximation
|
| 25 |
-
|
| 26 |
-
output_all_layers: Optional[bool] = False # True: Output all layers | False: Output only last layer
|
| 27 |
-
output_attention: Optional[str] = None # None | norm | vector | both
|
| 28 |
-
output_res1: Optional[str] = None # None | norm | vector | both
|
| 29 |
-
output_LN1: Optional[str] = None # None | norm | vector | both
|
| 30 |
-
output_FFN: Optional[str] = None # None | norm | vector | both
|
| 31 |
-
output_res2: Optional[str] = None # None | norm | vector | both
|
| 32 |
-
output_encoder: Optional[str] = None # None | norm | vector | both
|
| 33 |
-
output_aggregated: Optional[str] = None # None | norm | vector | both
|
| 34 |
-
output_pooler: Optional[str] = None # None | norm | vector | both
|
| 35 |
-
|
| 36 |
-
output_classifier: Optional[bool] = True
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
@dataclass
|
| 40 |
-
class GlobencOutput():
|
| 41 |
-
attention: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
| 42 |
-
res1: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
| 43 |
-
LN1: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
| 44 |
-
FFN: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
| 45 |
-
res2: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
| 46 |
-
encoder: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
| 47 |
-
aggregated: Optional[Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Tuple[torch.Tensor], torch.Tensor]] = None
|
| 48 |
-
pooler: Optional[Union[Tuple[torch.Tensor], torch.Tensor]] = None
|
| 49 |
-
classifier: Optional[torch.Tensor] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|