Update app.py
Browse files
app.py
CHANGED
|
@@ -6,21 +6,12 @@ import time
|
|
| 6 |
import logging
|
| 7 |
import threading
|
| 8 |
import queue
|
| 9 |
-
import json
|
| 10 |
-
import gc
|
| 11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 12 |
|
| 13 |
# Set up logging
|
| 14 |
-
logging.basicConfig(
|
| 15 |
-
level=logging.INFO,
|
| 16 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 17 |
-
datefmt='%Y-%m-%d %H:%M:%S'
|
| 18 |
-
)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
-
# Print startup banner for visibility in logs
|
| 22 |
-
print("\n===== Application Startup at", time.strftime("%Y-%m-%d %H:%M:%S"), "=====\n")
|
| 23 |
-
|
| 24 |
# Fix caching issue on Hugging Face Spaces
|
| 25 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
| 26 |
os.environ["HF_HOME"] = "/tmp"
|
|
@@ -36,110 +27,41 @@ logger.info(f"Using device: {device}")
|
|
| 36 |
tokenizer = None
|
| 37 |
model = None
|
| 38 |
|
| 39 |
-
# Check available system resources
|
| 40 |
-
def log_system_info():
|
| 41 |
-
# Basic system info
|
| 42 |
-
logger.info(f"Python version: {os.sys.version}")
|
| 43 |
-
|
| 44 |
-
# CPU info
|
| 45 |
-
import multiprocessing
|
| 46 |
-
logger.info(f"CPU cores: {multiprocessing.cpu_count()}")
|
| 47 |
-
|
| 48 |
-
# Memory info
|
| 49 |
-
try:
|
| 50 |
-
import psutil
|
| 51 |
-
mem = psutil.virtual_memory()
|
| 52 |
-
logger.info(f"Memory: Total={mem.total/1e9:.1f}GB, Available={mem.available/1e9:.1f}GB ({mem.percent}% used)")
|
| 53 |
-
except ImportError:
|
| 54 |
-
logger.info("psutil not installed, skipping detailed memory info")
|
| 55 |
-
|
| 56 |
-
# PyTorch info
|
| 57 |
-
logger.info(f"PyTorch version: {torch.__version__}")
|
| 58 |
-
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 59 |
-
if torch.cuda.is_available():
|
| 60 |
-
logger.info(f"CUDA version: {torch.version.cuda}")
|
| 61 |
-
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 62 |
-
|
| 63 |
# Initialize models once on startup
|
| 64 |
def initialize_models():
|
| 65 |
global tokenizer, model
|
| 66 |
try:
|
| 67 |
logger.info("Loading language model...")
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# You can change the model here if needed
|
| 71 |
-
model_name = "Qwen/Qwen2.5-1.5B-Instruct" # Good balance of quality and speed for CPU
|
| 72 |
-
|
| 73 |
-
# Load tokenizer with caching
|
| 74 |
-
logger.info(f"Loading tokenizer: {model_name}")
|
| 75 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 76 |
-
model_name,
|
| 77 |
-
use_fast=True, # Use the fast tokenizers when available
|
| 78 |
-
local_files_only=False # Allow downloading if not cached
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
# Free up memory before loading model
|
| 82 |
-
gc.collect()
|
| 83 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 84 |
-
|
| 85 |
-
# Load model with optimizations for CPU
|
| 86 |
-
logger.info(f"Loading model: {model_name}")
|
| 87 |
-
|
| 88 |
-
# Set lower precision for CPU to reduce memory usage
|
| 89 |
-
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 90 |
-
|
| 91 |
model = AutoModelForCausalLM.from_pretrained(
|
| 92 |
model_name,
|
| 93 |
-
torch_dtype=
|
| 94 |
-
|
| 95 |
-
|
| 96 |
)
|
| 97 |
|
| 98 |
-
# Handle padding tokens
|
| 99 |
if tokenizer.pad_token is None:
|
| 100 |
-
logger.info("Setting pad token to EOS token")
|
| 101 |
tokenizer.pad_token = tokenizer.eos_token
|
| 102 |
model.config.pad_token_id = model.config.eos_token_id
|
| 103 |
|
| 104 |
-
# Set up model configuration for better generation
|
| 105 |
-
model.config.do_sample = True # Enable sampling
|
| 106 |
-
model.config.temperature = 0.7 # Default temperature
|
| 107 |
-
model.config.top_p = 0.9 # Default top_p
|
| 108 |
-
|
| 109 |
logger.info("Models initialized successfully")
|
| 110 |
except Exception as e:
|
| 111 |
logger.error(f"Error initializing models: {str(e)}")
|
| 112 |
raise
|
| 113 |
|
| 114 |
-
# TextStreamer class for token-by-token generation
|
| 115 |
-
class TextStreamer:
|
| 116 |
-
def __init__(self, tokenizer, queue):
|
| 117 |
-
self.tokenizer = tokenizer
|
| 118 |
-
self.queue = queue
|
| 119 |
-
self.current_tokens = []
|
| 120 |
-
|
| 121 |
-
def put(self, token_ids):
|
| 122 |
-
self.current_tokens.extend(token_ids.tolist())
|
| 123 |
-
text = self.tokenizer.decode(self.current_tokens, skip_special_tokens=True)
|
| 124 |
-
self.queue.put(text)
|
| 125 |
-
|
| 126 |
-
def end(self):
|
| 127 |
-
pass
|
| 128 |
-
|
| 129 |
# Function to simulate "thinking" process
|
| 130 |
def thinking_process(message, result_queue):
|
| 131 |
"""
|
| 132 |
-
This function simulates a thinking process and puts the result in the queue
|
| 133 |
-
It includes both an explicit thinking stage and then a generation stage.
|
| 134 |
"""
|
| 135 |
try:
|
| 136 |
-
# Simulate
|
| 137 |
logger.info(f"Thinking about: '{message}'")
|
| 138 |
|
| 139 |
-
# Create
|
| 140 |
prompt = f"""<|im_start|>system
|
| 141 |
-
You are a helpful, friendly, and thoughtful AI assistant.
|
| 142 |
-
Let's approach the user's request step by step.
|
| 143 |
<|im_end|>
|
| 144 |
<|im_start|>user
|
| 145 |
{message}<|im_end|>
|
|
@@ -147,31 +69,23 @@ Let's approach the user's request step by step.
|
|
| 147 |
"""
|
| 148 |
|
| 149 |
# Handle inputs
|
| 150 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=
|
| 151 |
-
inputs = {k: v.to(
|
| 152 |
|
| 153 |
# Generate answer with streaming
|
| 154 |
streamer = TextStreamer(tokenizer, result_queue)
|
| 155 |
|
| 156 |
-
#
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
do_sample=True,
|
| 168 |
-
streamer=streamer,
|
| 169 |
-
num_beams=1, # Reduced from 2
|
| 170 |
-
repetition_penalty=1.2
|
| 171 |
-
)
|
| 172 |
-
except Exception as e:
|
| 173 |
-
logger.error(f"Model generation error: {str(e)}")
|
| 174 |
-
result_queue.put(f"\n\nI apologize, but I encountered an error while processing your request.")
|
| 175 |
|
| 176 |
# Signal generation is complete
|
| 177 |
result_queue.put(None)
|
|
@@ -182,54 +96,42 @@ Let's approach the user's request step by step.
|
|
| 182 |
# Signal generation is complete
|
| 183 |
result_queue.put(None)
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
# API route for home page
|
| 186 |
@app.route('/')
|
| 187 |
def home():
|
| 188 |
-
return jsonify({"message": "AI Chat API is running!"
|
| 189 |
-
|
| 190 |
-
# Health check endpoint
|
| 191 |
-
@app.route('/health')
|
| 192 |
-
def health():
|
| 193 |
-
if model is None or tokenizer is None:
|
| 194 |
-
return jsonify({"status": "initializing"}), 503
|
| 195 |
-
return jsonify({"status": "healthy"})
|
| 196 |
|
| 197 |
# API route for streaming chat responses
|
| 198 |
-
@app.route('/chat', methods=['POST'
|
| 199 |
def chat():
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
return jsonify({"error": "Models are still initializing. Please try again shortly."}), 503
|
| 203 |
-
|
| 204 |
-
# Handle both POST JSON and GET query parameters for flexibility
|
| 205 |
-
if request.method == 'POST':
|
| 206 |
-
try:
|
| 207 |
-
data = request.get_json()
|
| 208 |
-
message = data.get("message", "")
|
| 209 |
-
except:
|
| 210 |
-
# If JSON parsing fails, try form data
|
| 211 |
-
message = request.form.get("message", "")
|
| 212 |
-
else: # GET
|
| 213 |
-
message = request.args.get("message", "")
|
| 214 |
|
| 215 |
if not message:
|
| 216 |
return jsonify({"error": "Message is required"}), 400
|
| 217 |
|
| 218 |
try:
|
| 219 |
def generate():
|
| 220 |
-
# Signal the start of streaming with headers
|
| 221 |
-
yield "retry: 1000\n"
|
| 222 |
-
yield "event: message\n"
|
| 223 |
-
|
| 224 |
-
# Show thinking indicator
|
| 225 |
-
yield f"data: [Thinking...]\n\n"
|
| 226 |
-
|
| 227 |
# Create a queue for communication between threads
|
| 228 |
result_queue = queue.Queue()
|
| 229 |
|
| 230 |
# Start thinking in a separate thread
|
| 231 |
thread = threading.Thread(target=thinking_process, args=(message, result_queue))
|
| 232 |
-
thread.daemon = True # Make thread die when main thread exits
|
| 233 |
thread.start()
|
| 234 |
|
| 235 |
# Stream results as they become available
|
|
@@ -245,8 +147,7 @@ def chat():
|
|
| 245 |
new_part = result[len(previous_text):]
|
| 246 |
previous_text = result
|
| 247 |
if new_part:
|
| 248 |
-
yield f"data: {
|
| 249 |
-
time.sleep(0.01) # Small delay for more natural typing effect
|
| 250 |
|
| 251 |
except queue.Empty:
|
| 252 |
# Timeout occurred
|
|
@@ -255,15 +156,7 @@ def chat():
|
|
| 255 |
|
| 256 |
yield "data: [DONE]\n\n"
|
| 257 |
|
| 258 |
-
return Response(
|
| 259 |
-
stream_with_context(generate()),
|
| 260 |
-
mimetype='text/event-stream',
|
| 261 |
-
headers={
|
| 262 |
-
'Cache-Control': 'no-cache',
|
| 263 |
-
'Connection': 'keep-alive',
|
| 264 |
-
'X-Accel-Buffering': 'no' # Disable buffering for Nginx
|
| 265 |
-
}
|
| 266 |
-
)
|
| 267 |
|
| 268 |
except Exception as e:
|
| 269 |
logger.error(f"Error processing chat request: {str(e)}")
|
|
@@ -272,10 +165,6 @@ def chat():
|
|
| 272 |
# Simple API for non-streaming chat (fallback)
|
| 273 |
@app.route('/chat-simple', methods=['POST'])
|
| 274 |
def chat_simple():
|
| 275 |
-
# Check if models are loaded
|
| 276 |
-
if model is None or tokenizer is None:
|
| 277 |
-
return jsonify({"error": "Models are still initializing. Please try again shortly."}), 503
|
| 278 |
-
|
| 279 |
data = request.get_json()
|
| 280 |
message = data.get("message", "")
|
| 281 |
|
|
@@ -283,29 +172,29 @@ def chat_simple():
|
|
| 283 |
return jsonify({"error": "Message is required"}), 400
|
| 284 |
|
| 285 |
try:
|
| 286 |
-
# Create prompt with system message
|
| 287 |
prompt = f"""<|im_start|>system
|
| 288 |
-
You are a helpful assistant.
|
| 289 |
<|im_end|>
|
| 290 |
<|im_start|>user
|
| 291 |
{message}<|im_end|>
|
| 292 |
<|im_start|>assistant
|
| 293 |
"""
|
| 294 |
|
| 295 |
-
# Handle inputs
|
| 296 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=
|
| 297 |
-
inputs = {k: v.to(
|
| 298 |
-
|
| 299 |
-
# Generate answer
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
|
| 310 |
# Decode and format answer
|
| 311 |
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
@@ -322,16 +211,9 @@ You are a helpful assistant.
|
|
| 322 |
|
| 323 |
if __name__ == "__main__":
|
| 324 |
try:
|
| 325 |
-
#
|
| 326 |
-
flask_thread = threading.Thread(target=lambda: app.run(host="0.0.0.0", port=7860))
|
| 327 |
-
flask_thread.daemon = True
|
| 328 |
-
flask_thread.start()
|
| 329 |
-
|
| 330 |
-
# Initialize models in the main thread
|
| 331 |
-
logger.info("Starting Flask application")
|
| 332 |
initialize_models()
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
flask_thread.join()
|
| 336 |
except Exception as e:
|
| 337 |
logger.critical(f"Failed to start application: {str(e)}")
|
|
|
|
| 6 |
import logging
|
| 7 |
import threading
|
| 8 |
import queue
|
|
|
|
|
|
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
|
| 11 |
# Set up logging
|
| 12 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
# Fix caching issue on Hugging Face Spaces
|
| 16 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
| 17 |
os.environ["HF_HOME"] = "/tmp"
|
|
|
|
| 27 |
tokenizer = None
|
| 28 |
model = None
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# Initialize models once on startup
|
| 31 |
def initialize_models():
|
| 32 |
global tokenizer, model
|
| 33 |
try:
|
| 34 |
logger.info("Loading language model...")
|
| 35 |
+
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
model_name,
|
| 39 |
+
torch_dtype=torch.float16, # Use float16 for lower memory on CPU
|
| 40 |
+
device_map="cpu", # Explicitly set to CPU
|
| 41 |
+
low_cpu_mem_usage=True # Optimize memory loading
|
| 42 |
)
|
| 43 |
|
|
|
|
| 44 |
if tokenizer.pad_token is None:
|
|
|
|
| 45 |
tokenizer.pad_token = tokenizer.eos_token
|
| 46 |
model.config.pad_token_id = model.config.eos_token_id
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
logger.info("Models initialized successfully")
|
| 49 |
except Exception as e:
|
| 50 |
logger.error(f"Error initializing models: {str(e)}")
|
| 51 |
raise
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
# Function to simulate "thinking" process
|
| 54 |
def thinking_process(message, result_queue):
|
| 55 |
"""
|
| 56 |
+
This function simulates a thinking process and puts the result in the queue
|
|
|
|
| 57 |
"""
|
| 58 |
try:
|
| 59 |
+
# Simulate thinking process
|
| 60 |
logger.info(f"Thinking about: '{message}'")
|
| 61 |
|
| 62 |
+
# Create prompt with system message
|
| 63 |
prompt = f"""<|im_start|>system
|
| 64 |
+
You are a helpful, friendly, and thoughtful AI assistant. Think carefully and provide informative, detailed responses.
|
|
|
|
| 65 |
<|im_end|>
|
| 66 |
<|im_start|>user
|
| 67 |
{message}<|im_end|>
|
|
|
|
| 69 |
"""
|
| 70 |
|
| 71 |
# Handle inputs
|
| 72 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 73 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
| 74 |
|
| 75 |
# Generate answer with streaming
|
| 76 |
streamer = TextStreamer(tokenizer, result_queue)
|
| 77 |
|
| 78 |
+
# Generate response
|
| 79 |
+
model.generate(
|
| 80 |
+
**inputs,
|
| 81 |
+
max_new_tokens=512,
|
| 82 |
+
temperature=0.7,
|
| 83 |
+
top_p=0.9,
|
| 84 |
+
do_sample=True,
|
| 85 |
+
streamer=streamer,
|
| 86 |
+
num_beams=1,
|
| 87 |
+
no_repeat_ngram_size=3
|
| 88 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# Signal generation is complete
|
| 91 |
result_queue.put(None)
|
|
|
|
| 96 |
# Signal generation is complete
|
| 97 |
result_queue.put(None)
|
| 98 |
|
| 99 |
+
# TextStreamer class for token-by-token generation
|
| 100 |
+
class TextStreamer:
|
| 101 |
+
def __init__(self, tokenizer, queue):
|
| 102 |
+
self.tokenizer = tokenizer
|
| 103 |
+
self.queue = queue
|
| 104 |
+
self.current_tokens = []
|
| 105 |
+
|
| 106 |
+
def put(self, token_ids):
|
| 107 |
+
self.current_tokens.extend(token_ids.tolist())
|
| 108 |
+
text = self.tokenizer.decode(self.current_tokens, skip_special_tokens=True)
|
| 109 |
+
self.queue.put(text)
|
| 110 |
+
|
| 111 |
+
def end(self):
|
| 112 |
+
pass
|
| 113 |
+
|
| 114 |
# API route for home page
|
| 115 |
@app.route('/')
|
| 116 |
def home():
|
| 117 |
+
return jsonify({"message": "AI Chat API is running!"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# API route for streaming chat responses
|
| 120 |
+
@app.route('/chat', methods=['POST'])
|
| 121 |
def chat():
|
| 122 |
+
data = request.get_json()
|
| 123 |
+
message = data.get("message", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
if not message:
|
| 126 |
return jsonify({"error": "Message is required"}), 400
|
| 127 |
|
| 128 |
try:
|
| 129 |
def generate():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
# Create a queue for communication between threads
|
| 131 |
result_queue = queue.Queue()
|
| 132 |
|
| 133 |
# Start thinking in a separate thread
|
| 134 |
thread = threading.Thread(target=thinking_process, args=(message, result_queue))
|
|
|
|
| 135 |
thread.start()
|
| 136 |
|
| 137 |
# Stream results as they become available
|
|
|
|
| 147 |
new_part = result[len(previous_text):]
|
| 148 |
previous_text = result
|
| 149 |
if new_part:
|
| 150 |
+
yield f"data: {new_part}\n\n"
|
|
|
|
| 151 |
|
| 152 |
except queue.Empty:
|
| 153 |
# Timeout occurred
|
|
|
|
| 156 |
|
| 157 |
yield "data: [DONE]\n\n"
|
| 158 |
|
| 159 |
+
return Response(stream_with_context(generate()), mimetype='text/event-stream')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
except Exception as e:
|
| 162 |
logger.error(f"Error processing chat request: {str(e)}")
|
|
|
|
| 165 |
# Simple API for non-streaming chat (fallback)
|
| 166 |
@app.route('/chat-simple', methods=['POST'])
|
| 167 |
def chat_simple():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
data = request.get_json()
|
| 169 |
message = data.get("message", "")
|
| 170 |
|
|
|
|
| 172 |
return jsonify({"error": "Message is required"}), 400
|
| 173 |
|
| 174 |
try:
|
| 175 |
+
# Create prompt with system message
|
| 176 |
prompt = f"""<|im_start|>system
|
| 177 |
+
You are a helpful, friendly, and thoughtful AI assistant. Think carefully and provide informative, detailed responses.
|
| 178 |
<|im_end|>
|
| 179 |
<|im_start|>user
|
| 180 |
{message}<|im_end|>
|
| 181 |
<|im_start|>assistant
|
| 182 |
"""
|
| 183 |
|
| 184 |
+
# Handle inputs
|
| 185 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 186 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
| 187 |
+
|
| 188 |
+
# Generate answer
|
| 189 |
+
output = model.generate(
|
| 190 |
+
**inputs,
|
| 191 |
+
max_new_tokens=512,
|
| 192 |
+
temperature=0.7,
|
| 193 |
+
top_p=0.9,
|
| 194 |
+
do_sample=True,
|
| 195 |
+
num_beams=1,
|
| 196 |
+
no_repeat_ngram_size=3
|
| 197 |
+
)
|
| 198 |
|
| 199 |
# Decode and format answer
|
| 200 |
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
| 211 |
|
| 212 |
if __name__ == "__main__":
|
| 213 |
try:
|
| 214 |
+
# Initialize models at startup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
initialize_models()
|
| 216 |
+
logger.info("Starting Flask application")
|
| 217 |
+
app.run(host="0.0.0.0", port=7860)
|
|
|
|
| 218 |
except Exception as e:
|
| 219 |
logger.critical(f"Failed to start application: {str(e)}")
|