Spaces:
Sleeping
Sleeping
third commit
Browse files- earnings_app.py +24 -25
earnings_app.py
CHANGED
|
@@ -104,38 +104,37 @@ service_context = ServiceContext.from_defaults(
|
|
| 104 |
index = GPTVectorStoreIndex.from_documents([], service_context=service_context)
|
| 105 |
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
query: str, filter_key_list: List[str], filter_value_list: List[str]
|
| 115 |
-
):
|
| 116 |
-
"""Auto retrieval function.
|
| 117 |
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
query = query or "Query"
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
for k, v in zip(filter_key_list, filter_value_list)
|
| 126 |
-
]
|
| 127 |
-
retriever = VectorIndexRetriever(
|
| 128 |
-
index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
|
| 129 |
-
)
|
| 130 |
-
query_engine = RetrieverQueryEngine.from_args(retriever, service_context=service_context)
|
| 131 |
-
|
| 132 |
-
response = query_engine.query(query)
|
| 133 |
-
return str(response)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
# Make sure to use a recent model that supports tools
|
| 139 |
|
| 140 |
auto_retrieve_tool = FunctionTool.from_defaults(
|
| 141 |
fn=auto_retrieve_fn,
|
|
|
|
| 104 |
index = GPTVectorStoreIndex.from_documents([], service_context=service_context)
|
| 105 |
|
| 106 |
|
| 107 |
+
# Main function to extract information
|
| 108 |
+
def extract_information():
|
| 109 |
+
# Make sure to use a recent model that supports tools
|
| 110 |
|
| 111 |
+
storage_context = wandb_callback.load_storage_context(
|
| 112 |
+
artifact_url="llmop/final-project-v1/earnings-index:v3"
|
| 113 |
+
)
|
| 114 |
|
| 115 |
+
index = load_index_from_storage(storage_context, service_context=service_context)
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
def auto_retrieve_fn(
|
| 118 |
+
query: str, filter_key_list: List[str], filter_value_list: List[str]
|
| 119 |
+
):
|
| 120 |
+
"""Auto retrieval function.
|
| 121 |
|
| 122 |
+
Performs auto-retrieval from a vector database, and then applies a set of filters.
|
|
|
|
| 123 |
|
| 124 |
+
"""
|
| 125 |
+
query = query or "Query"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
exact_match_filters = [
|
| 128 |
+
ExactMatchFilter(key=k, value=v)
|
| 129 |
+
for k, v in zip(filter_key_list, filter_value_list)
|
| 130 |
+
]
|
| 131 |
+
retriever = VectorIndexRetriever(
|
| 132 |
+
index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
|
| 133 |
+
)
|
| 134 |
+
query_engine = RetrieverQueryEngine.from_args(retriever, service_context=service_context)
|
| 135 |
|
| 136 |
+
response = query_engine.query(query)
|
| 137 |
+
return str(response)
|
|
|
|
| 138 |
|
| 139 |
auto_retrieve_tool = FunctionTool.from_defaults(
|
| 140 |
fn=auto_retrieve_fn,
|