Spaces:
Runtime error
Runtime error
update_front (#1)
Browse files- update_front (c7961b46bec10a01097c8e8763a6eca9986911f4)
app.py
CHANGED
|
@@ -36,11 +36,14 @@ import gradio as gr
|
|
| 36 |
from functools import partial
|
| 37 |
|
| 38 |
import pdb
|
| 39 |
-
|
| 40 |
import matplotlib.pyplot as plt
|
| 41 |
|
| 42 |
from skimage import exposure
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
|
| 45 |
{'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
|
| 46 |
{'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
|
|
@@ -242,6 +245,22 @@ custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
|
|
| 242 |
|
| 243 |
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
with gr.Blocks() as demo:
|
| 246 |
|
| 247 |
gr.Markdown(value='# Prithvi multi temporal crop classification')
|
|
@@ -253,16 +272,29 @@ with gr.Blocks() as demo:
|
|
| 253 |
inp = gr.File()
|
| 254 |
btn = gr.Button("Submit")
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
|
| 263 |
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
| 264 |
-
|
| 265 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
with gr.Column():
|
| 267 |
gr.Markdown(value='### Model prediction legend')
|
| 268 |
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
|
|
|
|
| 36 |
from functools import partial
|
| 37 |
|
| 38 |
import pdb
|
|
|
|
| 39 |
import matplotlib.pyplot as plt
|
| 40 |
|
| 41 |
from skimage import exposure
|
| 42 |
|
| 43 |
+
import pandas as pd
|
| 44 |
+
from vega_datasets import data
|
| 45 |
+
|
| 46 |
+
|
| 47 |
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
|
| 48 |
{'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
|
| 49 |
{'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
|
|
|
|
| 245 |
|
| 246 |
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
|
| 247 |
|
| 248 |
+
|
| 249 |
+
stocks = data.stocks()
|
| 250 |
+
gapminder = data.gapminder()
|
| 251 |
+
gapminder = gapminder.loc[
|
| 252 |
+
gapminder.country.isin(["Argentina", "Australia", "Afghanistan"])
|
| 253 |
+
]
|
| 254 |
+
climate = data.climate()
|
| 255 |
+
seattle_weather = data.seattle_weather()
|
| 256 |
+
|
| 257 |
+
simple = pd.DataFrame(
|
| 258 |
+
{
|
| 259 |
+
"a": ["A", "B", "C", "D", "E", "F", "G", "H", "I"],
|
| 260 |
+
"b": [28, 55, 43, 91, 81, 53, 19, 87, 52],
|
| 261 |
+
}
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
with gr.Blocks() as demo:
|
| 265 |
|
| 266 |
gr.Markdown(value='# Prithvi multi temporal crop classification')
|
|
|
|
| 272 |
inp = gr.File()
|
| 273 |
btn = gr.Button("Submit")
|
| 274 |
|
| 275 |
+
with gr.Column():
|
| 276 |
+
inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
|
| 277 |
+
inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
|
| 278 |
+
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
|
| 279 |
+
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
|
| 280 |
+
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
|
| 281 |
|
| 282 |
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
| 283 |
+
|
| 284 |
with gr.Row():
|
| 285 |
+
with gr.Column():
|
| 286 |
+
with gr.Row():
|
| 287 |
+
gr.BarPlot(simple,
|
| 288 |
+
x="a",
|
| 289 |
+
y="b",
|
| 290 |
+
title="Simple Bar Plot with made up data",
|
| 291 |
+
tooltip=["a", "b"],
|
| 292 |
+
y_lim=[20, 100],)
|
| 293 |
+
with gr.Row():
|
| 294 |
+
gr.LinePlot(simple,
|
| 295 |
+
x='a',
|
| 296 |
+
y='b')
|
| 297 |
+
|
| 298 |
with gr.Column():
|
| 299 |
gr.Markdown(value='### Model prediction legend')
|
| 300 |
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
|