Spaces:
Running
Running
hf_space readme changed
Browse files
README.md
CHANGED
|
@@ -1,28 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
##
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
- `POST /api/v1/auth/login` - Login
|
| 27 |
-
- `POST /api/v1/chat/` - Send message (requires auth)
|
| 28 |
-
- `GET /health` - Health check
|
|
|
|
| 1 |
+
# π¦ QUESTRAG - Banking QUEries and Support system via Trained Reinforced RAG
|
| 2 |
+
|
| 3 |
+
[](https://www.python.org/downloads/)
|
| 4 |
+
[](https://fastapi.tiangolo.com/)
|
| 5 |
+
[](https://reactjs.org/)
|
| 6 |
+
[](https://opensource.org/licenses/MIT)
|
| 7 |
+
[](https://huggingface.co/spaces/eeshanyaj/questrag-backend)
|
| 8 |
+
|
| 9 |
+
> An intelligent banking chatbot powered by **Retrieval-Augmented Generation (RAG)** and **Reinforcement Learning (RL)** to provide accurate, context-aware responses to Indian banking queries while optimizing token costs.
|
| 10 |
+
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
## π Table of Contents
|
| 14 |
+
- [Overview](#overview)
|
| 15 |
+
- [Key Features](#key-features)
|
| 16 |
+
- [System Architecture](#system-architecture)
|
| 17 |
+
- [Technology Stack](#technology-stack)
|
| 18 |
+
- [Installation](#installation)
|
| 19 |
+
- [Configuration](#configuration)
|
| 20 |
+
- [Usage](#usage)
|
| 21 |
+
- [Project Structure](#project-structure)
|
| 22 |
+
- [Datasets](#datasets)
|
| 23 |
+
- [Performance Metrics](#performance-metrics)
|
| 24 |
+
- [API Documentation](#api-documentation)
|
| 25 |
+
- [Deployment](#deployment)
|
| 26 |
+
- [Contributing](#contributing)
|
| 27 |
+
- [License](#license)
|
| 28 |
+
- [Acknowledgments](#acknowledgments)
|
| 29 |
+
- [Contact](#contact)
|
| 30 |
+
- [Status](#status)
|
| 31 |
+
- [Links](#links)
|
| 32 |
+
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
## π― Overview
|
| 36 |
+
QUESTRAG is an **advanced banking chatbot** designed to revolutionize customer support in the Indian banking sector. By combining **Retrieval-Augmented Generation (RAG)** with **Reinforcement Learning (RL)**, the system intelligently decides when to fetch external context from a knowledge base and when to respond directly, **reducing token costs by up to 31%** while maintaining high accuracy.
|
| 37 |
+
|
| 38 |
+
### Problem Statement
|
| 39 |
+
Existing banking chatbots suffer from:
|
| 40 |
+
- β Limited response flexibility (rigid, rule-based systems)
|
| 41 |
+
- β Poor handling of informal/real-world queries
|
| 42 |
+
- β Lack of contextual understanding
|
| 43 |
+
- β High operational costs due to inefficient token usage
|
| 44 |
+
- β Low user satisfaction and trust
|
| 45 |
+
|
| 46 |
+
### Solution
|
| 47 |
+
QUESTRAG addresses these challenges through:
|
| 48 |
+
- β
**Domain-specific RAG** trained on 19,000+ banking queries / support data
|
| 49 |
+
- β
**RL-optimized policy network** (BERT-based) for smart context-fetching decisions
|
| 50 |
+
- β
**Fine-tuned retriever model** (E5-base-v2) using InfoNCE + Triplet Loss
|
| 51 |
+
- β
**Groq LLM with HuggingFace fallback** for reliable, fast responses
|
| 52 |
+
- β
**Full-stack web application** with modern UI/UX and JWT authentication
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## π Key Features
|
| 57 |
+
|
| 58 |
+
### π€ Intelligent RAG Pipeline
|
| 59 |
+
- **FAISS-powered retrieval** for fast similarity search across 19,352 documents
|
| 60 |
+
- **Fine-tuned embedding model** (`e5-base-v2`) trained on English + Hinglish paraphrases
|
| 61 |
+
- **Context-aware response generation** using Llama 3 models (8B & 70B) via Groq
|
| 62 |
+
|
| 63 |
+
### π§ Reinforcement Learning System
|
| 64 |
+
- **BERT-based policy network** (`bert-base-uncased`) for FETCH/NO_FETCH decisions
|
| 65 |
+
- **Reward-driven optimization** (+2.0 accurate, +0.5 needed fetch, -0.5 incorrect)
|
| 66 |
+
- **31% token cost reduction** via optimized retrieval
|
| 67 |
+
|
| 68 |
+
### π¨ Modern Web Interface
|
| 69 |
+
- **React 18 + Vite** with Tailwind CSS
|
| 70 |
+
- **Real-time chat**, conversation history, JWT authentication
|
| 71 |
+
- **Responsive design** for desktop and mobile
|
| 72 |
+
|
| 73 |
+
### π Enterprise-Ready Backend
|
| 74 |
+
- **FastAPI + MongoDB Atlas** for scalable async operations
|
| 75 |
+
- **JWT authentication** with secure password hashing (bcrypt)
|
| 76 |
+
- **Multi-provider LLM** (Groq β HuggingFace automatic fallback)
|
| 77 |
+
- **Deployed on HuggingFace Spaces** with Docker containerization
|
| 78 |
+
|
| 79 |
+
---
|
| 80 |
+
|
| 81 |
+
## ποΈ System Architecture
|
| 82 |
+
|
| 83 |
+
<p align="center">
|
| 84 |
+
<img src="./assets/system.png" alt="System Architecture Diagram" width="750"/>
|
| 85 |
+
</p>
|
| 86 |
+
|
| 87 |
+
### π Workflow
|
| 88 |
+
1. **User Query** β FastAPI receives query via REST API
|
| 89 |
+
2. **Policy Decision** β BERT-based RL model decides FETCH or NO_FETCH
|
| 90 |
+
3. **Conditional Retrieval** β If FETCH β Retrieve top-5 docs from FAISS using E5-base-v2
|
| 91 |
+
4. **Response Generation** β Llama 3 (via Groq) generates final answer
|
| 92 |
+
5. **Evaluation & Logging** β Logged in MongoDB + reward-based model update
|
| 93 |
+
|
| 94 |
+
---
|
| 95 |
+
|
| 96 |
+
## π Sequence Diagram
|
| 97 |
+
|
| 98 |
+
<p align="center">
|
| 99 |
+
<img src="./assets/sequence_diagram.png" alt="Sequence Diagram" width="750"/>
|
| 100 |
+
</p>
|
| 101 |
+
|
| 102 |
+
---
|
| 103 |
+
|
| 104 |
+
## π οΈ Technology Stack
|
| 105 |
+
|
| 106 |
+
### **Frontend**
|
| 107 |
+
- βοΈ React 18.3.1 + Vite 5.4.2
|
| 108 |
+
- π¨ Tailwind CSS 3.4.1
|
| 109 |
+
- π React Context API + Axios + React Router DOM
|
| 110 |
+
|
| 111 |
+
### **Backend**
|
| 112 |
+
- π FastAPI 0.104.1
|
| 113 |
+
- ποΈ MongoDB Atlas + Motor (async driver)
|
| 114 |
+
- π JWT Auth + Passlib (bcrypt)
|
| 115 |
+
- π€ PyTorch 2.9.1, Transformers 4.57, FAISS 1.13.0
|
| 116 |
+
- π¬ Groq (Llama 3.1 8B Instant / Llama 3.3 70B Versatile)
|
| 117 |
+
- π― Sentence Transformers 5.1.2
|
| 118 |
+
|
| 119 |
+
### **Machine Learning**
|
| 120 |
+
- π§ **Policy Network**: BERT-base-uncased (trained with RL)
|
| 121 |
+
- π **Retriever**: E5-base-v2 (fine-tuned with InfoNCE + Triplet Loss)
|
| 122 |
+
- π **Vector Store**: FAISS (19,352 documents)
|
| 123 |
+
|
| 124 |
+
### **Deployment**
|
| 125 |
+
- π³ Docker (HuggingFace Spaces)
|
| 126 |
+
- π€ HuggingFace Hub (model storage)
|
| 127 |
+
- βοΈ MongoDB Atlas (cloud database)
|
| 128 |
+
- π Python 3.12 + uvicorn
|
| 129 |
+
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
## βοΈ Installation
|
| 133 |
+
|
| 134 |
+
### π§© Prerequisites
|
| 135 |
+
- Python 3.12+
|
| 136 |
+
- Node.js 18+
|
| 137 |
+
- MongoDB Atlas account (or local MongoDB 6.0+)
|
| 138 |
+
- Groq API key (or HuggingFace token)
|
| 139 |
+
|
| 140 |
+
### π§ Backend Setup (Local Development)
|
| 141 |
+
|
| 142 |
+
```bash
|
| 143 |
+
# Navigate to backend
|
| 144 |
+
cd backend
|
| 145 |
+
|
| 146 |
+
# Create virtual environment
|
| 147 |
+
python -m venv venv
|
| 148 |
+
|
| 149 |
+
# Activate it
|
| 150 |
+
source venv/bin/activate # Linux/Mac
|
| 151 |
+
venv\Scripts\activate # Windows
|
| 152 |
+
|
| 153 |
+
# Install dependencies
|
| 154 |
+
pip install -r requirements.txt
|
| 155 |
+
|
| 156 |
+
# Create environment file
|
| 157 |
+
cp .env.example .env
|
| 158 |
+
# Edit .env with your credentials (see Configuration section)
|
| 159 |
+
|
| 160 |
+
# Build FAISS index (one-time setup)
|
| 161 |
+
python build_faiss_index.py
|
| 162 |
+
|
| 163 |
+
# Start backend server
|
| 164 |
+
uvicorn app.main:app --reload --port 8000
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
### π» Frontend Setup
|
| 168 |
+
|
| 169 |
+
```bash
|
| 170 |
+
# Navigate to frontend
|
| 171 |
+
cd frontend
|
| 172 |
+
|
| 173 |
+
# Install dependencies
|
| 174 |
+
npm install
|
| 175 |
+
|
| 176 |
+
# Create environment file
|
| 177 |
+
cp .env.example .env
|
| 178 |
+
# Update VITE_API_URL to point to your backend
|
| 179 |
+
|
| 180 |
+
# Start dev server
|
| 181 |
+
npm run dev
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
---
|
| 185 |
+
|
| 186 |
+
## βοΈ Configuration
|
| 187 |
+
|
| 188 |
+
### π Backend `.env` (Key Parameters)
|
| 189 |
+
|
| 190 |
+
| **Category** | **Key** | **Example / Description** |
|
| 191 |
+
|-------------------|----------------------------------|--------------------------------------------------|
|
| 192 |
+
| Environment | `ENVIRONMENT` | `development` or `production` |
|
| 193 |
+
| MongoDB | `MONGODB_URI` | `mongodb+srv://user:[email protected]/` |
|
| 194 |
+
| Authentication | `SECRET_KEY` | Generate with `python -c "import secrets; print(secrets.token_urlsafe(32))"` |
|
| 195 |
+
| | `ALGORITHM` | `HS256` |
|
| 196 |
+
| | `ACCESS_TOKEN_EXPIRE_MINUTES` | `1440` (24 hours) |
|
| 197 |
+
| Groq API | `GROQ_API_KEY_1` | Your primary Groq API key |
|
| 198 |
+
| | `GROQ_API_KEY_2` | Secondary key (optional) |
|
| 199 |
+
| | `GROQ_API_KEY_3` | Tertiary key (optional) |
|
| 200 |
+
| | `GROQ_CHAT_MODEL` | `llama-3.1-8b-instant` |
|
| 201 |
+
| | `GROQ_EVAL_MODEL` | `llama-3.3-70b-versatile` |
|
| 202 |
+
| HuggingFace | `HF_TOKEN_1` | HuggingFace token (fallback LLM) |
|
| 203 |
+
| | `HF_MODEL_REPO` | `eeshanyaj/questrag_models` (for model download) |
|
| 204 |
+
| Model Paths | `POLICY_MODEL_PATH` | `app/models/best_policy_model.pth` |
|
| 205 |
+
| | `RETRIEVER_MODEL_PATH` | `app/models/best_retriever_model.pth` |
|
| 206 |
+
| | `FAISS_INDEX_PATH` | `app/models/faiss_index.pkl` |
|
| 207 |
+
| | `KB_PATH` | `app/data/final_knowledge_base.jsonl` |
|
| 208 |
+
| Device | `DEVICE` | `cpu` or `cuda` |
|
| 209 |
+
| RAG Params | `TOP_K` | `5` (number of documents to retrieve) |
|
| 210 |
+
| | `SIMILARITY_THRESHOLD` | `0.5` (minimum similarity score) |
|
| 211 |
+
| Policy Network | `CONFIDENCE_THRESHOLD` | `0.7` (policy decision confidence) |
|
| 212 |
+
| CORS | `ALLOWED_ORIGINS` | `http://localhost:5173` or `*` |
|
| 213 |
+
|
| 214 |
+
### π Frontend `.env`
|
| 215 |
+
|
| 216 |
+
```bash
|
| 217 |
+
# Local development
|
| 218 |
+
VITE_API_URL=http://localhost:8000
|
| 219 |
+
|
| 220 |
+
# Production (HuggingFace Spaces)
|
| 221 |
+
VITE_API_URL=https://eeshanyaj-questrag-backend.hf.space
|
| 222 |
+
```
|
| 223 |
+
|
| 224 |
---
|
| 225 |
|
| 226 |
+
## π Usage
|
| 227 |
+
|
| 228 |
+
### π₯οΈ Local Development
|
| 229 |
|
| 230 |
+
#### Start Backend Server
|
| 231 |
|
| 232 |
+
```bash
|
| 233 |
+
cd backend
|
| 234 |
+
source venv/bin/activate # or venv\Scripts\activate
|
| 235 |
+
uvicorn app.main:app --reload --port 8000
|
| 236 |
+
```
|
| 237 |
+
|
| 238 |
+
- **Backend**: http://localhost:8000
|
| 239 |
+
- **API Docs**: http://localhost:8000/docs
|
| 240 |
+
- **Health Check**: http://localhost:8000/health
|
| 241 |
+
|
| 242 |
+
#### Start Frontend Dev Server
|
| 243 |
+
|
| 244 |
+
```bash
|
| 245 |
+
cd frontend
|
| 246 |
+
npm run dev
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
- **Frontend**: http://localhost:5173
|
| 250 |
+
|
| 251 |
+
### π Production (HuggingFace Spaces)
|
| 252 |
+
|
| 253 |
+
**Backend API**:
|
| 254 |
+
- **Base URL**: https://eeshanyaj-questrag-backend.hf.space
|
| 255 |
+
- **API Docs**: https://eeshanyaj-questrag-backend.hf.space/docs
|
| 256 |
+
- **Health Check**: https://eeshanyaj-questrag-backend.hf.space/health
|
| 257 |
+
|
| 258 |
+
**Frontend** (Coming Soon):
|
| 259 |
+
- Will be deployed on Vercel/Netlify
|
| 260 |
+
|
| 261 |
+
---
|
| 262 |
+
|
| 263 |
+
## π Project Structure
|
| 264 |
+
|
| 265 |
+
```
|
| 266 |
+
questrag/
|
| 267 |
+
β
|
| 268 |
+
βββ backend/
|
| 269 |
+
β βββ app/
|
| 270 |
+
β β βββ api/v1/
|
| 271 |
+
β β β βββ auth.py # Auth endpoints (register, login)
|
| 272 |
+
β β β βββ chat.py # Chat endpoints
|
| 273 |
+
β β βββ core/
|
| 274 |
+
β β β βββ llm_manager.py # Groq + HF LLM orchestration
|
| 275 |
+
β β β βββ security.py # JWT & password hashing
|
| 276 |
+
β β βββ ml/
|
| 277 |
+
β β β βββ policy_network.py # RL Policy model (BERT)
|
| 278 |
+
β β β βββ retriever.py # E5-base-v2 retriever
|
| 279 |
+
β β βββ db/
|
| 280 |
+
β β β βββ mongodb.py # MongoDB connection
|
| 281 |
+
β β β βββ repositories/ # User & conversation repos
|
| 282 |
+
β β βββ services/
|
| 283 |
+
β β β βββ chat_service.py # Orchestration logic
|
| 284 |
+
β β βββ models/
|
| 285 |
+
β β β βββ best_policy_model.pth # Trained policy network
|
| 286 |
+
β β β βββ best_retriever_model.pth # Fine-tuned retriever
|
| 287 |
+
β β β βββ faiss_index.pkl # FAISS vector store
|
| 288 |
+
β β βββ data/
|
| 289 |
+
β β β βββ final_knowledge_base.jsonl # 19,352 Q&A pairs
|
| 290 |
+
β β βββ config.py # Settings & env vars
|
| 291 |
+
β β βββ main.py # FastAPI app entry point
|
| 292 |
+
β βββ Dockerfile # Docker config for HF Spaces
|
| 293 |
+
β βββ requirements.txt
|
| 294 |
+
β βββ .env.example
|
| 295 |
+
β
|
| 296 |
+
βββ frontend/
|
| 297 |
+
βββ src/
|
| 298 |
+
β βββ components/ # UI Components
|
| 299 |
+
β βββ context/ # Auth Context
|
| 300 |
+
β βββ pages/ # Login, Register, Chat
|
| 301 |
+
β βββ services/api.js # Axios Client
|
| 302 |
+
β βββ App.jsx
|
| 303 |
+
β βββ main.jsx
|
| 304 |
+
βββ package.json
|
| 305 |
+
βββ .env
|
| 306 |
+
```
|
| 307 |
+
|
| 308 |
+
---
|
| 309 |
+
|
| 310 |
+
## π Datasets
|
| 311 |
+
|
| 312 |
+
### 1. Final Knowledge Base
|
| 313 |
+
- **Size**: 19,352 question-answer pairs
|
| 314 |
+
- **Categories**: 15 banking categories
|
| 315 |
+
- **Intents**: 22 unique intents (ATM, CARD, LOAN, ACCOUNT, etc.)
|
| 316 |
+
- **Source**: Combination of:
|
| 317 |
+
- Bitext Retail Banking Dataset (Hugging Face)
|
| 318 |
+
- RetailBanking-Conversations Dataset
|
| 319 |
+
- Manually curated FAQs from SBI, ICICI, HDFC, Yes Bank, Axis Bank
|
| 320 |
+
|
| 321 |
+
### 2. Retriever Training Dataset
|
| 322 |
+
- **Size**: 11,655 paraphrases
|
| 323 |
+
- **Source**: 1,665 unique FAQs from knowledge base
|
| 324 |
+
- **Paraphrases per FAQ**:
|
| 325 |
+
- 4 English paraphrases
|
| 326 |
+
- 2 Hinglish paraphrases
|
| 327 |
+
- Original FAQ
|
| 328 |
+
- **Training**: InfoNCE Loss + Triplet Loss with E5-base-v2
|
| 329 |
+
|
| 330 |
+
### 3. Policy Network Training Dataset
|
| 331 |
+
- **Size**: 182 queries from 6 chat sessions
|
| 332 |
+
- **Format**: (state, action, reward) tuples
|
| 333 |
+
- **Actions**: FETCH (1) or NO_FETCH (0)
|
| 334 |
+
- **Rewards**: +2.0 (correct), +0.5 (needed fetch), -0.5 (incorrect)
|
| 335 |
+
|
| 336 |
+
---
|
| 337 |
|
| 338 |
+
## π Performance Metrics
|
| 339 |
+
|
| 340 |
+
*Coming soon: Detailed performance metrics including accuracy, response time, token cost reduction, and user satisfaction scores.*
|
| 341 |
+
|
| 342 |
+
---
|
| 343 |
+
|
| 344 |
+
## π API Documentation
|
| 345 |
+
|
| 346 |
+
### Authentication
|
| 347 |
+
|
| 348 |
+
#### Register
|
| 349 |
+
|
| 350 |
+
```http
|
| 351 |
+
POST /api/v1/auth/register
|
| 352 |
+
Content-Type: application/json
|
| 353 |
+
|
| 354 |
+
{
|
| 355 |
+
"username": "john_doe",
|
| 356 |
+
"email": "[email protected]",
|
| 357 |
+
"password": "securepassword123"
|
| 358 |
+
}
|
| 359 |
+
```
|
| 360 |
+
|
| 361 |
+
**Response:**
|
| 362 |
+
|
| 363 |
+
```json
|
| 364 |
+
{
|
| 365 |
+
"message": "User registered successfully",
|
| 366 |
+
"user_id": "507f1f77bcf86cd799439011"
|
| 367 |
+
}
|
| 368 |
+
```
|
| 369 |
+
|
| 370 |
+
#### Login
|
| 371 |
+
|
| 372 |
+
```http
|
| 373 |
+
POST /api/v1/auth/login
|
| 374 |
+
Content-Type: application/json
|
| 375 |
+
|
| 376 |
+
{
|
| 377 |
+
"username": "john_doe",
|
| 378 |
+
"password": "securepassword123"
|
| 379 |
+
}
|
| 380 |
+
```
|
| 381 |
+
|
| 382 |
+
**Response:**
|
| 383 |
+
|
| 384 |
+
```json
|
| 385 |
+
{
|
| 386 |
+
"access_token": "eyJhbGciOiJIUzI1NiIs...",
|
| 387 |
+
"token_type": "bearer"
|
| 388 |
+
}
|
| 389 |
+
```
|
| 390 |
+
|
| 391 |
+
---
|
| 392 |
+
|
| 393 |
+
### Chat
|
| 394 |
+
|
| 395 |
+
#### Send Message
|
| 396 |
+
|
| 397 |
+
```http
|
| 398 |
+
POST /api/v1/chat/
|
| 399 |
+
Authorization: Bearer <token>
|
| 400 |
+
Content-Type: application/json
|
| 401 |
+
|
| 402 |
+
{
|
| 403 |
+
"query": "What are the interest rates for home loans?",
|
| 404 |
+
"conversation_id": "optional-session-id"
|
| 405 |
+
}
|
| 406 |
+
```
|
| 407 |
+
|
| 408 |
+
**Response:**
|
| 409 |
+
|
| 410 |
+
```json
|
| 411 |
+
{
|
| 412 |
+
"response": "Current home loan interest rates range from 8.5% to 9.5% per annum...",
|
| 413 |
+
"conversation_id": "abc123",
|
| 414 |
+
"metadata": {
|
| 415 |
+
"policy_action": "FETCH",
|
| 416 |
+
"retrieval_score": 0.89,
|
| 417 |
+
"documents_retrieved": 5,
|
| 418 |
+
"llm_provider": "groq"
|
| 419 |
+
}
|
| 420 |
+
}
|
| 421 |
+
```
|
| 422 |
+
|
| 423 |
+
#### Get Conversation History
|
| 424 |
+
|
| 425 |
+
```http
|
| 426 |
+
GET /api/v1/chat/conversations/{conversation_id}
|
| 427 |
+
Authorization: Bearer <token>
|
| 428 |
+
```
|
| 429 |
+
|
| 430 |
+
**Response:**
|
| 431 |
+
|
| 432 |
+
```json
|
| 433 |
+
{
|
| 434 |
+
"conversation_id": "abc123",
|
| 435 |
+
"messages": [
|
| 436 |
+
{
|
| 437 |
+
"role": "user",
|
| 438 |
+
"content": "What are the interest rates?",
|
| 439 |
+
"timestamp": "2025-11-28T10:30:00Z"
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"role": "assistant",
|
| 443 |
+
"content": "Current rates are...",
|
| 444 |
+
"timestamp": "2025-11-28T10:30:05Z",
|
| 445 |
+
"metadata": {
|
| 446 |
+
"policy_action": "FETCH"
|
| 447 |
+
}
|
| 448 |
+
}
|
| 449 |
+
]
|
| 450 |
+
}
|
| 451 |
+
```
|
| 452 |
+
|
| 453 |
+
#### List All Conversations
|
| 454 |
+
|
| 455 |
+
```http
|
| 456 |
+
GET /api/v1/chat/conversations
|
| 457 |
+
Authorization: Bearer <token>
|
| 458 |
+
```
|
| 459 |
+
|
| 460 |
+
#### Delete Conversation
|
| 461 |
+
|
| 462 |
+
```http
|
| 463 |
+
DELETE /api/v1/chat/conversation/{conversation_id}
|
| 464 |
+
Authorization: Bearer <token>
|
| 465 |
+
```
|
| 466 |
+
|
| 467 |
+
---
|
| 468 |
+
|
| 469 |
+
## π Deployment
|
| 470 |
+
|
| 471 |
+
### HuggingFace Spaces (Backend)
|
| 472 |
+
|
| 473 |
+
The backend is deployed on HuggingFace Spaces using Docker:
|
| 474 |
+
|
| 475 |
+
1. **Models are stored** on HuggingFace Hub: `eeshanyaj/questrag_models`
|
| 476 |
+
2. **On first startup**, models are automatically downloaded from HF Hub
|
| 477 |
+
3. **Docker container** runs FastAPI with uvicorn on port 7860
|
| 478 |
+
4. **Environment secrets** are securely managed in HF Space settings
|
| 479 |
+
|
| 480 |
+
**Deployment Steps:**
|
| 481 |
+
|
| 482 |
+
```bash
|
| 483 |
+
# 1. Upload models to HuggingFace Hub
|
| 484 |
+
huggingface-cli upload eeshanyaj/questrag_models \
|
| 485 |
+
app/models/best_policy_model.pth \
|
| 486 |
+
models/best_policy_model.pth
|
| 487 |
+
|
| 488 |
+
# 2. Push backend code to HF Space
|
| 489 |
+
git remote add space https://huggingface.co/spaces/eeshanyaj/questrag-backend
|
| 490 |
+
git push space main
|
| 491 |
+
|
| 492 |
+
# 3. Add environment secrets in HF Space Settings
|
| 493 |
+
# (MongoDB URI, Groq keys, JWT secret, etc.)
|
| 494 |
+
```
|
| 495 |
+
|
| 496 |
+
### Frontend Deployment (Vercel/Netlify)
|
| 497 |
+
|
| 498 |
+
```bash
|
| 499 |
+
# Build for production
|
| 500 |
+
npm run build
|
| 501 |
+
|
| 502 |
+
# Deploy to Vercel
|
| 503 |
+
vercel --prod
|
| 504 |
+
|
| 505 |
+
# Update .env.production with backend URL
|
| 506 |
+
VITE_API_URL=https://eeshanyaj-questrag-backend.hf.space
|
| 507 |
+
```
|
| 508 |
+
|
| 509 |
+
---
|
| 510 |
+
|
| 511 |
+
## π€ Contributing
|
| 512 |
+
|
| 513 |
+
Contributions are welcome! Please follow these steps:
|
| 514 |
+
|
| 515 |
+
1. Fork the repository
|
| 516 |
+
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
|
| 517 |
+
3. Commit your changes (`git commit -m 'Add amazing feature'`)
|
| 518 |
+
4. Push to the branch (`git push origin feature/amazing-feature`)
|
| 519 |
+
5. Open a Pull Request
|
| 520 |
+
|
| 521 |
+
### Development Guidelines
|
| 522 |
+
- Follow PEP 8 for Python code
|
| 523 |
+
- Use ESLint + Prettier for JavaScript/React
|
| 524 |
+
- Write comprehensive docstrings and comments
|
| 525 |
+
- Add unit tests for new features
|
| 526 |
+
- Update documentation accordingly
|
| 527 |
+
|
| 528 |
+
---
|
| 529 |
+
|
| 530 |
+
## π License
|
| 531 |
+
|
| 532 |
+
MIT License β see [LICENSE](LICENSE)
|
| 533 |
+
|
| 534 |
+
---
|
| 535 |
+
|
| 536 |
+
## π Acknowledgments
|
| 537 |
+
|
| 538 |
+
### Research Inspiration
|
| 539 |
+
- **Main Paper**: "Optimizing Retrieval Augmented Generation for Domain-Specific Chatbots with Reinforcement Learning" (AAAI 2024)
|
| 540 |
+
- **Additional References**:
|
| 541 |
+
- "Evaluating BERT-based Rewards for Question Generation with RL"
|
| 542 |
+
- "Self-Reasoning for Retrieval-Augmented Language Models"
|
| 543 |
+
|
| 544 |
+
### Open Source Resources
|
| 545 |
+
- [RL-Self-Improving-RAG](https://github.com/subrata-samanta/RL-Self-Improving-RAG)
|
| 546 |
+
- [ARENA](https://github.com/ren258/ARENA)
|
| 547 |
+
- [RAGTechniques](https://github.com/NirDiamant/RAGTechniques)
|
| 548 |
+
- [Financial-RAG-From-Scratch](https://github.com/cse-amarjeet/Financial-RAG-From-Scratch)
|
| 549 |
+
|
| 550 |
+
### Datasets
|
| 551 |
+
- [Bitext Retail Banking Dataset](https://huggingface.co/datasets/bitext/Bitext-retail-banking-llm-chatbot-training-dataset)
|
| 552 |
+
- [RetailBanking-Conversations](https://huggingface.co/datasets/oopere/RetailBanking-Conversations)
|
| 553 |
+
|
| 554 |
+
### Technologies
|
| 555 |
+
- [FastAPI](https://fastapi.tiangolo.com/)
|
| 556 |
+
- [React](https://reactjs.org/)
|
| 557 |
+
- [HuggingFace](https://huggingface.co/)
|
| 558 |
+
- [Groq](https://groq.com/)
|
| 559 |
+
- [MongoDB Atlas](https://www.mongodb.com/cloud/atlas)
|
| 560 |
+
|
| 561 |
+
---
|
| 562 |
+
|
| 563 |
+
## π Contact
|
| 564 |
+
|
| 565 |
+
**Eeshanya Amit Joshi**
|
| 566 |
+
π§ [Email](mailto:[email protected])
|
| 567 |
+
πΌ [LinkedIn](https://www.linkedin.com/in/eeshanyajoshi/)
|
| 568 |
+
|
| 569 |
+
---
|
| 570 |
+
|
| 571 |
+
## π Status
|
| 572 |
+
|
| 573 |
+
### β
**Backend Deployed & Live!**
|
| 574 |
+
- π Backend API running on [HuggingFace Spaces](https://eeshanyaj-questrag-backend.hf.space)
|
| 575 |
+
- π API Documentation available at [/docs](https://eeshanyaj-questrag-backend.hf.space/docs)
|
| 576 |
+
- π Health status: [Check here](https://eeshanyaj-questrag-backend.hf.space/health)
|
| 577 |
+
|
| 578 |
+
### π§ **Frontend Deployment - Coming Soon!**
|
| 579 |
+
- Will be deployed on Vercel/Netlify
|
| 580 |
+
- Stay tuned for full application link! β€οΈ
|
| 581 |
+
|
| 582 |
+
---
|
| 583 |
+
|
| 584 |
+
## π Links
|
| 585 |
+
|
| 586 |
+
- **Live Backend API:** https://eeshanyaj-questrag-backend.hf.space
|
| 587 |
+
- **API Documentation:** https://eeshanyaj-questrag-backend.hf.space/docs
|
| 588 |
+
- **Health Check:** https://eeshanyaj-questrag-backend.hf.space/health
|
| 589 |
+
- **HuggingFace Space:** https://huggingface.co/spaces/eeshanyaj/questrag-backend
|
| 590 |
+
- **Model Repository:** https://huggingface.co/eeshanyaj/questrag_models
|
| 591 |
+
- **Research Paper:** [AAAI 2024 Workshop](https://arxiv.org/abs/2401.06800)
|
| 592 |
+
|
| 593 |
+
---
|
| 594 |
|
| 595 |
+
<p align="center">β¨ Made with β€οΈ for the Banking Industry β¨</p>
|
| 596 |
+
<p align="center">Powered by HuggingFace π€| Groq β‘| MongoDB π| Docker π³| </p>
|
|
|
|
|
|
|
|
|