Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,29 +1,60 @@
|
|
| 1 |
-
from transformers import pipeline
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
#
|
| 6 |
-
models =
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
"
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
demo.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
|
| 4 |
+
# Load the NER models
|
| 5 |
+
# Load the NER models
|
| 6 |
+
models = {
|
| 7 |
+
"dslim/bert-base-NER": pipeline(
|
| 8 |
+
"ner", model="dslim/bert-base-NER", grouped_entities=True
|
| 9 |
+
),
|
| 10 |
+
"dslim/bert-base-NER-uncased": pipeline(
|
| 11 |
+
"ner", model="dslim/bert-base-NER-uncased", grouped_entities=True
|
| 12 |
+
),
|
| 13 |
+
"dslim/bert-large-NER": pipeline(
|
| 14 |
+
"ner", model="dslim/bert-large-NER", grouped_entities=True
|
| 15 |
+
),
|
| 16 |
+
"dslim/distilbert-NER": pipeline(
|
| 17 |
+
"ner", model="dslim/distilbert-NER", grouped_entities=True
|
| 18 |
+
),
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def process(text, model_name):
|
| 23 |
+
ner = models[model_name]
|
| 24 |
+
ner_results = ner(text)
|
| 25 |
+
highlighted_text = []
|
| 26 |
+
last_idx = 0
|
| 27 |
+
for entity in ner_results:
|
| 28 |
+
start = entity["start"]
|
| 29 |
+
end = entity["end"]
|
| 30 |
+
label = entity["entity_group"]
|
| 31 |
+
# Add non-entity text
|
| 32 |
+
if start > last_idx:
|
| 33 |
+
highlighted_text.append((text[last_idx:start], None))
|
| 34 |
+
# Add entity text
|
| 35 |
+
highlighted_text.append((text[start:end], label))
|
| 36 |
+
last_idx = end
|
| 37 |
+
# Add any remaining text after the last entity
|
| 38 |
+
if last_idx < len(text):
|
| 39 |
+
highlighted_text.append((text[last_idx:], None))
|
| 40 |
+
return highlighted_text
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
with gr.Blocks() as demo:
|
| 44 |
+
gr.Markdown("# Named Entity Recognition with BERT Models")
|
| 45 |
+
with gr.Row():
|
| 46 |
+
model_selector = gr.Dropdown(
|
| 47 |
+
choices=list(models.keys()),
|
| 48 |
+
value=list(models.keys())[0],
|
| 49 |
+
label="Select Model",
|
| 50 |
+
)
|
| 51 |
+
text_input = gr.Textbox(
|
| 52 |
+
label="Enter Text",
|
| 53 |
+
lines=5,
|
| 54 |
+
value="Hugging Face Inc. is a company based in New York City. Its headquarters are in DUMBO, therefore very close to the Manhattan Bridge.",
|
| 55 |
+
)
|
| 56 |
+
output = gr.HighlightedText(label="Named Entities")
|
| 57 |
+
analyze_button = gr.Button("Analyze")
|
| 58 |
+
analyze_button.click(process, inputs=[text_input, model_selector], outputs=output)
|
| 59 |
|
| 60 |
demo.launch()
|