Spaces:
Running
Running
| # setwd('~/Dropbox/ImageSeq/') # Set your working directory if needed | |
| options(error = NULL) | |
| library(shiny) | |
| library(dplyr) | |
| library(fields) # For image.plot in heatMap | |
| library(akima) # For interpolation | |
| MAX_PLOT_DIM <- 600 | |
| safe_dim <- function(client_name, cap = MAX_PLOT_DIM) { | |
| if (exists("session", inherits = TRUE)) { # Shiny context? | |
| cd <- session$clientData[[client_name]] | |
| if (!is.null(cd)) return(min(cap, cd)) # clamp to cap | |
| } | |
| cap # fallback | |
| } | |
| # Load the data from sm.csv | |
| # Ensure 'sm.csv' is in the same directory as the app.R file or provide the full path. | |
| # Add error handling for file loading | |
| sm <- tryCatch({ | |
| read.csv("sm.csv") | |
| }, error = function(e) { | |
| stop("Error loading sm.csv: ", e$message, "\nPlease ensure 'sm.csv' is in the application directory.") | |
| }) | |
| # Define function to convert to numeric | |
| f2n <- function(x) as.numeric(as.character(x)) | |
| # Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims | |
| # Handle potential errors if split doesn't work as expected | |
| sm$MaxImageDimsLeft <- tryCatch({ | |
| unlist(lapply(strsplit(as.character(sm$MaxImageDims), split = "_"), function(x) sort(f2n(x))[1])) | |
| }, error = function(e) { | |
| warning("Could not parse MaxImageDimsLeft from MaxImageDims. Check format (e.g., '64_128').") | |
| NA # Assign NA or a default value | |
| }) | |
| sm$MaxImageDimsRight <- tryCatch({ | |
| unlist(lapply(strsplit(as.character(sm$MaxImageDims), split = "_"), function(x) sort(f2n(x))[2])) | |
| }, error = function(e) { | |
| warning("Could not parse MaxImageDimsRight from MaxImageDims. Check format (e.g., '64_128').") | |
| NA # Assign NA or a default value | |
| }) | |
| # Handle cases where parsing might have failed or where Right dim might be missing for single scale | |
| sm <- sm %>% | |
| mutate( | |
| MaxImageDimsLeft = f2n(MaxImageDimsLeft), # Ensure numeric | |
| MaxImageDimsRight = f2n(MaxImageDimsRight), # Ensure numeric | |
| # If Right is NA after parsing (or originally missing), assume it's the same as Left (single scale) | |
| MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight), MaxImageDimsLeft, MaxImageDimsRight) | |
| ) | |
| # Remove rows where essential dimensions couldn't be determined | |
| sm <- sm %>% filter(!is.na(MaxImageDimsLeft) & !is.na(MaxImageDimsRight)) | |
| # Heatmap function (no significant changes needed here, aesthetics controlled in server) | |
| heatMap <- function(x, y, z, | |
| main = "", | |
| N, yaxt = NULL, | |
| xlab = "", | |
| ylab = "", | |
| horizontal = FALSE, | |
| useLog = "", | |
| legend.width = 1, | |
| ylim = NULL, | |
| xlim = NULL, | |
| zlim = NULL, | |
| add.legend = TRUE, | |
| legend.only = FALSE, | |
| vline = NULL, | |
| col_vline = "black", | |
| hline = NULL, | |
| col_hline = "black", | |
| cex.lab = 1.3, # Default adjusted slightly | |
| cex.main = 1.5, # Default adjusted slightly | |
| myCol = NULL, | |
| includeMarginals = FALSE, | |
| marginalJitterSD_x = 0.01, | |
| marginalJitterSD_y = 0.01, | |
| openBrowser = FALSE, | |
| optimal_point = NULL) { | |
| if (openBrowser) { browser() } | |
| # Ensure finite values for interpolation range finding | |
| finite_x <- x[is.finite(x)] | |
| finite_y <- y[is.finite(y)] | |
| if(length(finite_x) == 0 || length(finite_y) == 0) { | |
| warning("Insufficient finite x or y data for interpolation range.") | |
| return(NULL) # Cannot proceed | |
| } | |
| min_x <- min(finite_x, na.rm = TRUE) | |
| max_x <- max(finite_x, na.rm = TRUE) | |
| min_y <- min(finite_y, na.rm = TRUE) | |
| max_y <- max(finite_y, na.rm = TRUE) | |
| # Ensure xo and yo sequences are valid | |
| if (min_x == max_x) { max_x <- min_x + 1e-6 } # Avoid zero range | |
| if (min_y == max_y) { max_y <- min_y + 1e-6 } # Avoid zero range | |
| xo_seq <- seq(min_x, max_x, length = N) | |
| yo_seq <- seq(min_y, max_y, length = N) | |
| # Perform interpolation | |
| s_ <- tryCatch({ | |
| akima::interp(x = x, y = y, z = z, | |
| xo = xo_seq, | |
| yo = yo_seq, | |
| duplicate = "mean", | |
| linear = TRUE) # Use linear interpolation by default | |
| }, error = function(e) { | |
| warning("Akima interpolation failed: ", e$message) | |
| return(NULL) # Return NULL if interp fails | |
| }) | |
| if (is.null(s_)) return(NULL) # Exit if interpolation failed | |
| if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) } | |
| if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) } | |
| # Default color palette if none provided | |
| if (is.null(myCol)) { myCol = hcl.colors(50, palette = "YlOrRd", rev = TRUE) } | |
| imageFxn <- if (add.legend) fields::image.plot else graphics::image | |
| if (!grepl(useLog, pattern = "z")) { | |
| imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main, | |
| cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim, | |
| legend.width = legend.width, horizontal = horizontal, yaxt = yaxt, | |
| zlim = zlim, legend.only = legend.only) | |
| } else { | |
| useLog <- gsub(useLog, pattern = "z", replace = "") | |
| z_finite <- s_$z[is.finite(s_$z)] | |
| if (length(z_finite) == 0 || all(z_finite <= 0)) { | |
| warning("Cannot compute log scale for z: All finite values are non-positive.") | |
| # Fallback to non-log scale or plot without z-log | |
| imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = paste(main, "(z-log failed)"), | |
| cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim, | |
| legend.width = legend.width, horizontal = horizontal, yaxt = yaxt, | |
| zlim = zlim, legend.only = legend.only) | |
| } else { | |
| zTicks <- pretty(range(log(z_finite[z_finite > 0]), na.rm = TRUE), n = 5) # Use pretty for nice log ticks | |
| zTickLabels <- signif(exp(zTicks), 2) # Nicer labels | |
| # ep_ <- min(z_finite[z_finite > 0], na.rm=TRUE) * 0.1 # Small positive value based on data | |
| ep_ <- 1e-9 # Or a small fixed epsilon | |
| s_$z[s_$z <= ep_] <- ep_ # Replace non-positive with epsilon for log | |
| imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt, | |
| axis.args = list(at = zTicks, labels = zTickLabels), | |
| main = main, cex.main = cex.main, xlab = xlab, ylab = ylab, | |
| log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim, | |
| horizontal = horizontal, col = myCol, legend.width = legend.width, | |
| zlim = if(!is.null(zlim)) log(zlim) else NULL, # Apply log to zlim if provided | |
| legend.only = legend.only) | |
| } | |
| } | |
| if (!is.null(vline)) { abline(v = vline, lwd = 3, col = col_vline, lty = 2) } # Thinner, dashed line | |
| if (!is.null(hline)) { abline(h = hline, lwd = 3, col = col_hline, lty = 2) } # Thinner, dashed line | |
| if (includeMarginals) { | |
| points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x, na.rm = TRUE)), # Added na.rm | |
| rep(ylim[1] + 0.02 * diff(ylim), length(y)), # Adjust position slightly off bottom | |
| pch = "|", col = "darkgray") | |
| points(rep(xlim[1] + 0.02 * diff(xlim), length(x)), # Adjust position slightly off left | |
| y + rnorm(length(y), sd = sd(y, na.rm = TRUE) * marginalJitterSD_y), # Added na.rm | |
| pch = "-", col = "darkgray") | |
| } | |
| # Add green star at optimal point if provided and valid | |
| if (!is.null(optimal_point) && is.finite(optimal_point$x) && is.finite(optimal_point$y)) { | |
| points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 2.5, lwd = 3) # Slightly smaller star | |
| } | |
| } | |
| ############################################################################## | |
| # IMPORTANT: Store the meaningful labels for metric in a named vector. | |
| # The "name" is what is displayed to the user in the dropdown, | |
| # while the "value" is the underlying column in the dataset. | |
| ############################################################################## | |
| metric_choices <- c( | |
| "Mean AUTOC RATE Ratio" = "AUTOC_rate_std_ratio_mean", | |
| "Mean AUTOC RATE" = "AUTOC_rate_mean", | |
| "Mean SD of AUTOC RATE" = "AUTOC_rate_std_mean", | |
| "Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc", | |
| "Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc", | |
| "Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc", | |
| "Mean Variable Importance (Img 1)" = "MeanVImportHalf1", # Shorter label | |
| "Mean Variable Importance (Img 2)" = "MeanVImportHalf2", # Shorter label | |
| "Mean Frac Top k Feats (Img 1)" = "FracTopkHalf1", # Shorter label | |
| "Mean RMSE" = "RMSE" | |
| ) | |
| ############################################################################## | |
| # Helper function to retrieve the *label* from its code | |
| ############################################################################## | |
| getMetricLabel <- function(metric_value) { | |
| # This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean". | |
| # If it doesn't find a match, return the code itself. | |
| lbl <- names(metric_choices)[which(metric_choices == metric_value)] | |
| if (length(lbl) == 0 || is.na(lbl)) return(metric_value) # Handle NA/no match | |
| lbl | |
| } | |
| # UI Definition | |
| ui <- fluidPage( | |
| titlePanel("Optimizing Multiscale Representations: An Interactive Analysis of Anti-poverty RCTs in Peru and Uganda"), | |
| tags$head( | |
| # Add some basic CSS for better spacing/responsiveness if needed | |
| tags$style(HTML(" | |
| .shiny-plot-output { /* Ensure plot output behaves well */ | |
| margin: auto; /* Center if container allows */ | |
| } | |
| .control-label { /* Ensure labels are readable */ | |
| font-weight: bold; | |
| } | |
| #contextNote { /* Style for the context note */ | |
| margin-top: 15px; | |
| font-size: 0.9em; /* Slightly smaller font */ | |
| line-height: 1.6; /* Better readability */ | |
| } | |
| #share-button { margin-bottom: 15px; } /* Add space below share button */ | |
| ")) | |
| ), | |
| tags$p( | |
| style = "text-align: left; margin-top: -10px; margin-bottom: 10px;", # Added margin-bottom | |
| tags$a( | |
| href = "https://planetarycausalinference.org/", | |
| target = "_blank", | |
| title = "PlanetaryCausalInference.org", | |
| style = "color: #337ab7; text-decoration: none; font-weight: bold;", # Make link bold | |
| "PlanetaryCausalInference.org ", | |
| icon("external-link", style = "font-size: 12px;") | |
| ) | |
| ), | |
| # ---- Share button HTML + JS ---- | |
| tags$div( | |
| style = "text-align: left;", # Removed fixed margin | |
| HTML(' | |
| <button id="share-button" | |
| style=" | |
| display: inline-flex; | |
| align-items: center; | |
| justify-content: center; | |
| gap: 8px; | |
| padding: 5px 10px; | |
| font-size: 14px; /* Slightly smaller font */ | |
| font-weight: normal; | |
| color: #333; /* Darker text */ | |
| background-color: #f8f9fa; /* Lighter background */ | |
| border: 1px solid #ccc; /* Lighter border */ | |
| border-radius: 4px; /* Smaller radius */ | |
| cursor: pointer; | |
| box-shadow: 0 1px 1px rgba(0,0,0,0.05); /* Softer shadow */ | |
| "> | |
| <svg width="16" height="16" viewBox="0 0 24 24" fill="none" stroke="currentColor" | |
| stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> | |
| <circle cx="18" cy="5" r="3"></circle> | |
| <circle cx="6" cy="12" r="3"></circle> | |
| <circle cx="18" cy="19" r="3"></circle> | |
| <line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line> | |
| <line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line> | |
| </svg> | |
| <strong>Share</strong> | |
| </button> | |
| '), | |
| tags$script( | |
| HTML(" | |
| (function() { | |
| const shareBtn = document.getElementById('share-button'); | |
| if (!shareBtn) return; // Exit if button not found | |
| function showCopyNotification() { | |
| const notification = document.createElement('div'); | |
| notification.innerText = 'Link copied!'; /* Shorter message */ | |
| notification.style.position = 'fixed'; | |
| notification.style.bottom = '15px'; /* Adjust position */ | |
| notification.style.left = '50%'; /* Center horizontally */ | |
| notification.style.transform = 'translateX(-50%)'; /* Correct centering */ | |
| notification.style.backgroundColor = 'rgba(0, 0, 0, 0.75)'; | |
| notification.style.color = '#fff'; | |
| notification.style.padding = '8px 15px'; /* Adjust padding */ | |
| notification.style.borderRadius = '4px'; | |
| notification.style.fontSize = '14px'; /* Match button font */ | |
| notification.style.zIndex = '10000'; /* Ensure visibility */ | |
| notification.style.boxShadow = '0 2px 5px rgba(0,0,0,0.2)'; /* Add shadow */ | |
| document.body.appendChild(notification); | |
| setTimeout(() => { notification.remove(); }, 1500); /* Shorter duration */ | |
| } | |
| shareBtn.addEventListener('click', function() { | |
| const currentURL = window.location.href; | |
| const pageTitle = document.title || 'Multiscale Explorer'; | |
| if (navigator.share) { | |
| navigator.share({ | |
| title: pageTitle, | |
| text: 'Check out this multiscale analysis:', /* Add context */ | |
| url: currentURL | |
| }) | |
| .catch((error) => { | |
| // If user cancels share, don't log error unless it's a real failure | |
| if (error.name !== 'AbortError') { | |
| console.log('Sharing failed', error); | |
| } | |
| }); | |
| } else if (navigator.clipboard && navigator.clipboard.writeText) { | |
| navigator.clipboard.writeText(currentURL).then(() => { | |
| showCopyNotification(); | |
| }, (err) => { | |
| console.error('Could not copy text: ', err); | |
| // Fallback alert if clipboard fails unexpectedly | |
| alert('Failed to copy link. Please copy manually:\\n' + currentURL); | |
| }); | |
| } else { | |
| // Basic fallback for very old browsers | |
| try { | |
| const textArea = document.createElement('textarea'); | |
| textArea.value = currentURL; | |
| textArea.style.position = 'fixed'; // Prevent scrolling | |
| textArea.style.opacity = '0'; // Hide element | |
| document.body.appendChild(textArea); | |
| textArea.select(); | |
| document.execCommand('copy'); | |
| showCopyNotification(); | |
| document.body.removeChild(textArea); | |
| } catch (err) { | |
| alert('Sharing not supported. Please copy this link manually:\\n' + currentURL); | |
| } | |
| } | |
| }); | |
| })(); | |
| ") | |
| ) | |
| ), | |
| # ---- End: Share button snippet ---- | |
| sidebarLayout( | |
| sidebarPanel( | |
| width = 3, # Explicitly set sidebar width (adjust as needed 1-12) | |
| selectInput("application", "Application:", # Colon for clarity | |
| choices = unique(sm$application), | |
| selected = unique(sm$application)[1]), | |
| selectInput("model", "Model:", | |
| choices = unique(sm$optimizeImageRep), | |
| selected = "clip-rsicd"), | |
| ######################################################################## | |
| # Use our named vector 'metric_choices' directly in selectInput | |
| ######################################################################## | |
| selectInput("metric", "Metric:", | |
| choices = metric_choices, | |
| selected = "AUTOC_rate_std_ratio_mean"), | |
| checkboxInput("compareToBest", "Compare to best single scale?", value = FALSE), # Question format | |
| # Add some explanation directly in the sidebar | |
| tags$hr(), # Horizontal line separator | |
| tags$p(tags$small("Adjust parameters to explore how multiscale image representations impact model performance or heterogeneity discovery across different applications.")) | |
| ), | |
| mainPanel( | |
| width = 9, # Explicitly set main panel width (should sum to 12 with sidebar) | |
| # Wrap plot in a div for potential future styling/sizing control | |
| div( | |
| # *** ADJUSTED PLOT OUTPUT *** | |
| plotOutput("heatmapPlot", height = "500px", width = "100%") | |
| ), | |
| # *** ADDED VERTICAL SPACE *** | |
| br(), # Add a line break for spacing | |
| # OR use a div with margin: | |
| tags$div(style="margin-bottom: 80px;"), # Alternative way to add space | |
| # Use uiOutput for potentially HTML content in the note | |
| uiOutput("contextNote") | |
| ) | |
| ) | |
| ) | |
| # Server Definition | |
| server <- function(input, output, session) { # Add session argument | |
| # Function to determine whether to maximize or minimize the metric | |
| get_better_direction <- function(metric_value) { | |
| # Assuming lower SD and lower RMSE are better | |
| if (grepl("std_mean|RMSE", metric_value, ignore.case = TRUE)) { | |
| "min" | |
| } else { | |
| "max" # Assume higher is better for others (RATE, Ratio, VImport, FracTopk) | |
| } | |
| } | |
| # Reactive data processing | |
| filteredData <- reactive({ | |
| req(input$application, input$model) # Ensure inputs are available | |
| df <- sm %>% | |
| filter(application == input$application, | |
| optimizeImageRep == input$model) %>% | |
| # Ensure dimensions are numeric before filtering/grouping | |
| mutate( | |
| MaxImageDimsLeft = as.numeric(MaxImageDimsLeft), | |
| MaxImageDimsRight = as.numeric(MaxImageDimsRight), | |
| metric_value = as.numeric(get(input$metric)) # Get chosen metric value | |
| ) %>% | |
| filter(is.finite(MaxImageDimsLeft) & is.finite(MaxImageDimsRight) & is.finite(metric_value)) # Keep only valid rows | |
| # Check if data exists after filtering | |
| if (nrow(df) == 0) { | |
| warning("No valid data found for the selected Application/Model/Metric combination.") | |
| return(NULL) | |
| } | |
| df | |
| }) | |
| # Reactive expression to compute grouped/summarized data and best single scale | |
| summaryData <- reactive({ | |
| data <- filteredData() | |
| req(data) # Require filtered data | |
| # Group data | |
| grouped_data <- data %>% | |
| group_by(MaxImageDimsLeft, MaxImageDimsRight) %>% | |
| summarise( | |
| mean_metric = mean(metric_value, na.rm = TRUE), | |
| se_metric = sd(metric_value, na.rm = TRUE) / sqrt(n()), | |
| n = n(), | |
| .groups = "drop" | |
| ) %>% | |
| filter(is.finite(mean_metric)) # Ensure mean is valid after aggregation | |
| if (nrow(grouped_data) < 3) { | |
| warning("Less than 3 unique dimension pairs after grouping. Cannot interpolate.") | |
| return(NULL) # Not enough data points for reliable interpolation | |
| } | |
| # Check variability in dimensions needed for interpolation | |
| if (length(unique(grouped_data$MaxImageDimsLeft)) < 2 || length(unique(grouped_data$MaxImageDimsRight)) < 2) { | |
| warning("Insufficient variability in one or both image dimensions for interpolation.") | |
| return(NULL) | |
| } | |
| better_dir <- get_better_direction(input$metric) | |
| # Calculate best single scale metric *from the summarized data* | |
| single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight) | |
| best_single_scale_metric <- if (nrow(single_scale_data) > 0) { | |
| if (better_dir == "max") { | |
| max(single_scale_data$mean_metric, na.rm = TRUE) | |
| } else { | |
| min(single_scale_data$mean_metric, na.rm = TRUE) | |
| } | |
| } else { | |
| NA # No single scale data available for comparison | |
| } | |
| # Calculate improvement only if best_single_scale_metric is valid | |
| if (is.finite(best_single_scale_metric)) { | |
| grouped_data <- grouped_data %>% | |
| mutate(improvement = if (better_dir == "max") { | |
| mean_metric - best_single_scale_metric | |
| } else { | |
| best_single_scale_metric - mean_metric | |
| }) | |
| } else { | |
| # If no valid single-scale baseline, improvement cannot be calculated | |
| grouped_data <- grouped_data %>% mutate(improvement = NA_real_) | |
| # Optionally disable the checkbox if comparison isn't possible | |
| # updateCheckboxInput(session, "compareToBest", value = FALSE, label = "Compare to best single scale (N/A)") | |
| # shinyjs::disable("compareToBest") # Requires shinyjs package | |
| } | |
| list( | |
| grouped_data = grouped_data, | |
| best_single_scale_metric = best_single_scale_metric, | |
| better_dir = better_dir | |
| ) | |
| }) | |
| # Reactive expression for interpolation (depends on summaryData) | |
| interpolatedData <- reactive({ | |
| sumData <- summaryData() | |
| req(sumData) # Requires valid summary data | |
| grouped_data <- sumData$grouped_data | |
| better_dir <- sumData$better_dir | |
| # Determine which z-value to interpolate based on user choice and availability | |
| use_improvement <- input$compareToBest && "improvement" %in% names(grouped_data) && any(is.finite(grouped_data$improvement)) | |
| z_to_interpolate <- if (use_improvement) { | |
| grouped_data$improvement | |
| } else { | |
| grouped_data$mean_metric | |
| } | |
| # Filter out rows where the chosen z value is not finite | |
| valid_rows <- is.finite(grouped_data$MaxImageDimsLeft) & | |
| is.finite(grouped_data$MaxImageDimsRight) & | |
| is.finite(z_to_interpolate) | |
| if (sum(valid_rows) < 3) { | |
| warning("Less than 3 valid points remaining for interpolation after filtering non-finite z-values.") | |
| return(NULL) | |
| } | |
| x <- grouped_data$MaxImageDimsLeft[valid_rows] | |
| y <- grouped_data$MaxImageDimsRight[valid_rows] | |
| z <- z_to_interpolate[valid_rows] | |
| # Double-check dimension variability again with filtered data | |
| if (length(unique(x)) < 2 || length(unique(y)) < 2) { | |
| warning("Insufficient dimension variability after filtering for interpolation.") | |
| return(NULL) | |
| } | |
| # Perform interpolation | |
| s_ <- tryCatch({ | |
| akima::interp( | |
| x = x, | |
| y = y, | |
| z = z, | |
| xo = seq(min(x, na.rm=TRUE), max(x, na.rm=TRUE), length = 50), | |
| yo = seq(min(y, na.rm=TRUE), max(y, na.rm=TRUE), length = 50), | |
| duplicate = "mean", | |
| linear = TRUE # Ensure linear is explicitly set if default changes | |
| ) | |
| }, error = function(e){ | |
| warning("Interpolation failed: ", e$message) | |
| return(NULL) | |
| }) | |
| if (is.null(s_) || !is.matrix(s_$z) || all(!is.finite(s_$z))) { | |
| warning("Interpolation result is invalid or contains no finite values.") | |
| return(NULL) # Interpolation failed or yielded no usable results | |
| } | |
| # Find optimal point from the *interpolated* grid (s_$z) | |
| optimal_z_value <- NA | |
| optimal_x <- NA | |
| optimal_y <- NA | |
| if(any(is.finite(s_$z))) { # Proceed only if there are finite values in the grid | |
| # Determine optimization direction for the *interpolated* z-value | |
| # If we interpolated 'improvement', we always maximize it. | |
| # Otherwise, use the original metric's direction. | |
| interp_better_dir <- if(use_improvement) "max" else better_dir | |
| if (interp_better_dir == "max") { | |
| max_idx <- which.max(s_$z) | |
| optimal_z_value <- max(s_$z, na.rm = TRUE) | |
| } else { | |
| max_idx <- which.min(s_$z) # Index of the minimum | |
| optimal_z_value <- min(s_$z, na.rm = TRUE) | |
| } | |
| # Convert linear index to row/column | |
| row_col <- arrayInd(max_idx, .dim = dim(s_$z)) | |
| optimal_x <- s_$x[row_col[1, 1]] | |
| optimal_y <- s_$y[row_col[1, 2]] | |
| } else { | |
| warning("No finite values in the interpolated grid to find optimum.") | |
| } | |
| list( | |
| s_ = s_, | |
| optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z_value), | |
| interpolated_metric_name = if(use_improvement) "Improvement" else getMetricLabel(input$metric) | |
| ) | |
| }) | |
| # Heatmap Output | |
| output$heatmapPlot <- renderPlot({ | |
| sumData <- summaryData() | |
| interpData <- interpolatedData() | |
| # Use req() for cleaner checking of reactive results | |
| req(sumData, interpData, cancelOutput = TRUE) # Ensure both summary and interpolation are valid | |
| grouped_data <- sumData$grouped_data | |
| optimal_point <- interpData$optimal_point | |
| # Determine z values and title based on checkbox and data availability | |
| use_improvement <- input$compareToBest && "improvement" %in% names(grouped_data) && any(is.finite(grouped_data$improvement)) | |
| if (use_improvement) { | |
| z <- grouped_data$improvement | |
| # Check if improvement calculation was possible | |
| if (all(is.na(z))) { | |
| plot.new() | |
| title(main = "Cannot Compute Improvement", sub = "No valid single-scale baseline found.", col.main = "red") | |
| return() | |
| } | |
| main_title <- paste(input$application, "-", getMetricLabel(input$metric), "\nImprovement Over Best Single Scale") | |
| plot_zlim <- range(interpData$s_$z, na.rm = TRUE) # Use range of interpolated improvement | |
| } else { | |
| z <- grouped_data$mean_metric | |
| main_title <- paste(input$application, "-", getMetricLabel(input$metric)) | |
| plot_zlim <- range(interpData$s_$z, na.rm = TRUE) # Use range of interpolated metric | |
| if (input$compareToBest) { # Add note if checkbox is ticked but comparison N/A | |
| main_title <- paste0(main_title, "\n(Comparison to single scale not available)") | |
| } | |
| } | |
| x <- grouped_data$MaxImageDimsLeft | |
| y <- grouped_data$MaxImageDimsRight | |
| # Filter data for plotting to match data used for interpolation | |
| valid_rows <- is.finite(x) & is.finite(y) & is.finite(z) | |
| if(sum(valid_rows) == 0) { | |
| plot.new() | |
| text(0.5, 0.5, "No valid data to plot.", cex = 1.5) | |
| return() | |
| } | |
| x_plot <- x[valid_rows] | |
| y_plot <- y[valid_rows] | |
| z_plot <- z[valid_rows] | |
| # *** ADJUSTED MARGINS AND COLORS *** | |
| #par(mar=c(5, 5, 4, 2) + 0.1) # Adjusted margins (bottom, left, top, right) | |
| par(mar=c(5.1, 4.1, 3.1, 4.1)) # Margins: bottom, left, top, right | |
| # *** USING HCL COLORS *** | |
| customPalette <- hcl.colors(50, palette = "YlOrRd", rev = TRUE) # Or "Viridis", "Plasma" etc. | |
| # Call heatMap using the raw (but filtered) data points | |
| # The interpolation result (interpData$s_) is implicitly used by heatMap via akima::interp | |
| # We pass the *original* x, y, z used for interpolation to heatMap | |
| heatMap( | |
| x = x_plot, | |
| y = y_plot, | |
| z = z_plot, # Pass the original data used for interpolation | |
| N = 50, # Interpolation grid size used within heatMap | |
| main = main_title, | |
| xlab = "Image Dimension 1 (log scale)", # Clarify log scale | |
| ylab = "Image Dimension 2 (log scale)", # Clarify log scale | |
| useLog = "xy", # Keep log scale for axes | |
| myCol = customPalette, | |
| cex.lab = 1.3, # Slightly reduced label size | |
| cex.main = 1.5, # Slightly reduced main title size | |
| zlim = plot_zlim, # Use zlim from the *interpolated* data for consistent coloring | |
| optimal_point = optimal_point, # Pass the calculated optimal point | |
| add.legend = TRUE, | |
| legend.width = 1.5 # Slightly wider legend | |
| ) | |
| }, | |
| width = function() safe_dim("output_heatmapPlot_width"), | |
| height = function() safe_dim("output_heatmapPlot_height"), | |
| res = 96, | |
| execOnResize = TRUE) # Adjust resolution if needed | |
| # Contextual Note Output (using renderUI for HTML) | |
| output$contextNote <- renderText({ | |
| SharedContextText <- c( | |
| "The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.", | |
| "The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.", | |
| "For more information, see the associated paper, <a href='https://arxiv.org/abs/2411.02134' target='_blank'>arXiv.org/abs/2411.02134</a> | |
| (<a href='https://connorjerzak.com/wp-content/uploads/2024/11/MultilevelBib.txt' target='_blank'>BibTex</a>), | |
| and <a href='https://www.youtube.com/watch?v=RvAoJGMlKAI' target='_blank'>YouTube tutorial</a>. | |
| ", | |
| "<div style='font-size: 10px; line-height: 1.5;'>", | |
| "<b>Glossary:</b><br>", | |
| "• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>", | |
| "• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>", | |
| "• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>", | |
| "• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>", | |
| "• <b>RATE Ratio:</b> A t-statistic-like quantity indicating how much a data-model combination captures treatment-effect variation. Ratio of the RATE and its standard error. It can employ two weighting scemes (AUTOC and Qini).<br>", | |
| "• <b>PC:</b> Principal Components; a compression step of neural representations.<br>", | |
| "• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>", | |
| "• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>", | |
| "</div>" | |
| ) | |
| chosen_metric_label <- getMetricLabel(input$metric) | |
| if (input$compareToBest) { | |
| c( | |
| paste( | |
| "This heatmap shows the improvement in", | |
| paste0("'", chosen_metric_label, "'"), | |
| "over the best single scale for", | |
| input$application, | |
| "using the", input$model, "model. The green star marks the optimal point." | |
| ), | |
| SharedContextText | |
| ) | |
| } else { | |
| c( | |
| paste( | |
| "This heatmap displays", | |
| paste0("'", chosen_metric_label, "'"), | |
| "for", input$application, | |
| "using the", input$model, | |
| "model across different image dimension combinations. The green star marks the optimal point." | |
| ), | |
| SharedContextText | |
| ) | |
| } | |
| }) | |
| } | |
| # Run the Shiny App | |
| shinyApp(ui = ui, server = server) |