Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import pandas as pd | |
| from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
| from sklearn.compose import make_column_transformer, make_column_selector | |
| from sklearn.model_selection import train_test_split | |
| fuel = pd.read_csv('../input/dl-course-data/fuel.csv') | |
| X = fuel.copy() | |
| # Remove target | |
| y = X.pop('FE') | |
| preprocessor = make_column_transformer( | |
| (StandardScaler(), | |
| make_column_selector(dtype_include=np.number)), | |
| (OneHotEncoder(sparse=False), | |
| make_column_selector(dtype_include=object)), | |
| ) | |
| X = preprocessor.fit_transform(X) | |
| y = np.log(y) # log transform target instead of standardizing | |
| input_shape = [X.shape[1]] | |
| print("Input shape: {}".format(input_shape)) | |
| from tensorflow import keras | |
| from tensorflow.keras import layers | |
| model = keras.Sequential([ | |
| layers.Dense(128, activation='relu', input_shape=input_shape), | |
| layers.Dense(128, activation='relu'), | |
| layers.Dense(64, activation='relu'), | |
| layers.Dense(1), | |
| ]) | |
| model.compile( | |
| optimizer='adam', | |
| loss='mae', | |
| ) | |
| history = model.fit( | |
| X, y, | |
| batch_size=128, | |
| epochs=200, | |
| ) | |
| import pandas as pd | |
| history_df = pd.DataFrame(history.history) | |
| # Start the plot at epoch 5. You can change this to get a different view. | |
| history_df.loc[5:, ['loss']].plot(); | |
| # YOUR CODE HERE: Experiment with different values for the learning rate, batch size, and number of examples | |
| learning_rate = 0.05 | |
| batch_size = 32 | |
| num_examples = 256 | |
| animate_sgd( | |
| learning_rate=learning_rate, | |
| batch_size=batch_size, | |
| num_examples=num_examples, | |
| # You can also change these, if you like | |
| steps=50, # total training steps (batches seen) | |
| true_w=3.0, # the slope of the data | |
| true_b=2.0, # the bias of the data | |
| ) | |