Spaces:
Sleeping
Sleeping
edited generate code
Browse files
app.py
CHANGED
|
@@ -16,15 +16,6 @@ pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
|
| 16 |
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
|
| 17 |
learn = load_learner('model.pkl')
|
| 18 |
|
| 19 |
-
# Initialize the Code Llama Instruct pipeline (example with 7B model)
|
| 20 |
-
llama_model_id = "meta-llama/CodeLlama-7b-Instruct-hf"
|
| 21 |
-
llama_pipeline = pipeline(
|
| 22 |
-
"text-generation",
|
| 23 |
-
model=llama_model_id,
|
| 24 |
-
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 25 |
-
device_map="auto"
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
# Überprüfe, ob das Zugriffstoken vorhanden ist
|
| 29 |
if access_token is None:
|
| 30 |
raise ValueError("Access token is missing. Make sure it is set as an environment variable.")
|
|
@@ -69,36 +60,41 @@ async def face_analyse(file: UploadFile = File(...)):
|
|
| 69 |
# Assuming categories is a list of category labels
|
| 70 |
return dict(zip(categories, map(float, probs)))
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
"""
|
| 75 |
-
Using the Code Llama
|
| 76 |
-
|
| 77 |
"""
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
]
|
| 87 |
|
| 88 |
-
|
| 89 |
-
messages,
|
| 90 |
-
max_new_tokens=256,
|
| 91 |
-
eos_token_id=terminators,
|
| 92 |
-
do_sample=True,
|
| 93 |
-
temperature=0.6,
|
| 94 |
-
top_p=0.9,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
generated_text = outputs[0]["generated_text"]
|
| 98 |
-
|
| 99 |
-
try:
|
| 100 |
-
extracted_info = json.loads(generated_text)
|
| 101 |
-
except json.JSONDecodeError:
|
| 102 |
-
return {"error": "Failed to parse the generated text as JSON."}
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
|
| 17 |
learn = load_learner('model.pkl')
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# Überprüfe, ob das Zugriffstoken vorhanden ist
|
| 20 |
if access_token is None:
|
| 21 |
raise ValueError("Access token is missing. Make sure it is set as an environment variable.")
|
|
|
|
| 60 |
# Assuming categories is a list of category labels
|
| 61 |
return dict(zip(categories, map(float, probs)))
|
| 62 |
|
| 63 |
+
# Initialisiere das Modell und den Tokenizer
|
| 64 |
+
model = "meta-llama/CodeLlama-7b-hf"
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
| 66 |
+
llama_pipeline = pipeline(
|
| 67 |
+
"text-generation",
|
| 68 |
+
model=model,
|
| 69 |
+
torch_dtype=torch.float16,
|
| 70 |
+
device_map="auto",
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
@app.get("/generate_json")
|
| 74 |
+
def generate_code(text: str):
|
| 75 |
"""
|
| 76 |
+
Using the Code Llama pipeline from `transformers`, generate code
|
| 77 |
+
from the given input text. The model used is `meta-llama/CodeLlama-7b-hf`.
|
| 78 |
"""
|
| 79 |
+
try:
|
| 80 |
+
sequences = llama_pipeline(
|
| 81 |
+
text,
|
| 82 |
+
do_sample=True,
|
| 83 |
+
top_k=10,
|
| 84 |
+
temperature=0.1,
|
| 85 |
+
top_p=0.95,
|
| 86 |
+
num_return_sequences=1,
|
| 87 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 88 |
+
max_length=200,
|
| 89 |
+
)
|
| 90 |
|
| 91 |
+
generated_text = sequences[0]["generated_text"]
|
| 92 |
+
except Exception as e:
|
| 93 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
| 94 |
|
| 95 |
+
return {"generated_text": generated_text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
# Beispielaufruf mit curl:
|
| 98 |
+
# curl -X 'GET' \
|
| 99 |
+
# 'http://localhost:8000/generate_code?text=import%20socket%0A%0Adef%20ping_exponential_backoff(host%3A%20str)%3A' \
|
| 100 |
+
# -H 'accept: application/json'
|