File size: 170,592 Bytes
10237b0
 
 
 
 
 
 
 
 
 
 
 
f19f17a
 
 
10237b0
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
10237b0
 
 
f19f17a
 
 
 
 
 
 
 
 
 
55ee165
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
10237b0
f19f17a
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
 
10237b0
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
55ee165
 
 
 
 
 
f19f17a
55ee165
10237b0
f19f17a
 
 
 
10237b0
f19f17a
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
 
 
 
 
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
 
 
 
 
 
 
 
 
 
 
f19f17a
55ee165
 
 
 
 
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
 
 
 
 
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
f19f17a
 
 
 
 
 
 
 
55ee165
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
55ee165
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
10237b0
f19f17a
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
 
f19f17a
 
 
 
c23cef2
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
c23cef2
f19f17a
 
 
 
 
c23cef2
f19f17a
c23cef2
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
10237b0
f19f17a
10237b0
f19f17a
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
 
f19f17a
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
 
 
 
 
 
 
 
 
 
 
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23cef2
 
f19f17a
 
 
 
 
 
 
 
 
c23cef2
 
 
 
f19f17a
c23cef2
 
 
 
 
 
f19f17a
c23cef2
 
 
 
 
 
 
 
f19f17a
 
 
 
 
 
55ee165
f19f17a
 
 
 
55ee165
f19f17a
10237b0
f19f17a
10237b0
f19f17a
 
 
c23cef2
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23cef2
 
f19f17a
 
c23cef2
f19f17a
 
 
 
 
 
 
 
 
c23cef2
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23cef2
 
 
 
 
f19f17a
c23cef2
 
 
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23cef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f19f17a
c23cef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f19f17a
 
c23cef2
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
f19f17a
55ee165
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
 
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
55ee165
f19f17a
 
 
55ee165
 
 
f19f17a
55ee165
10237b0
 
f19f17a
10237b0
 
 
 
c23cef2
f19f17a
 
 
 
 
 
 
 
 
 
55ee165
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
f19f17a
 
55ee165
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
c23cef2
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
c23cef2
 
f19f17a
 
c23cef2
 
f19f17a
c23cef2
 
 
f19f17a
 
 
 
 
 
 
 
c23cef2
 
f19f17a
 
c23cef2
 
 
 
 
 
 
 
 
 
 
 
 
 
f19f17a
c23cef2
 
 
 
 
 
 
 
 
 
 
f19f17a
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
10237b0
f19f17a
 
10237b0
f19f17a
 
 
 
10237b0
f19f17a
 
 
 
 
 
10237b0
f19f17a
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
55ee165
c23cef2
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
f19f17a
 
55ee165
 
f19f17a
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
 
10237b0
f19f17a
 
 
 
 
10237b0
f19f17a
 
 
 
 
 
 
 
 
 
55ee165
 
f19f17a
 
55ee165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f19f17a
 
55ee165
f19f17a
c23cef2
 
 
 
 
 
 
f19f17a
c23cef2
 
 
 
 
f19f17a
 
55ee165
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
f19f17a
 
 
 
 
 
55ee165
f19f17a
 
 
 
 
10237b0
f19f17a
 
10237b0
f19f17a
 
10237b0
 
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23cef2
 
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ee165
 
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
 
 
55ee165
f19f17a
55ee165
f19f17a
55ee165
f19f17a
 
 
55ee165
f19f17a
55ee165
f19f17a
 
 
 
 
 
 
 
 
 
 
 
c23cef2
f19f17a
 
 
 
 
 
 
 
 
 
 
 
55ee165
f19f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23cef2
f19f17a
55ee165
f19f17a
 
 
 
 
c23cef2
f19f17a
55ee165
f19f17a
 
 
 
 
 
c23cef2
f19f17a
55ee165
f19f17a
 
 
 
 
c23cef2
f19f17a
55ee165
f19f17a
 
 
 
 
c23cef2
f19f17a
55ee165
f19f17a
 
 
 
 
c23cef2
f19f17a
55ee165
f19f17a
 
 
10237b0
f19f17a
10237b0
f19f17a
 
 
 
 
 
10237b0
 
 
f19f17a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
import os
import gc
import cv2
import time
import tempfile
import mimetypes
import traceback
import numpy as np
import gradio as gr

# --- Logging Helper ---
def log_and_print(message, current_log=""):
    """Prints a message to the console and appends it to the log string."""
    print(message) # Print to console
    return current_log + message + "\n" # Append to log string with newline

# --- Helper Function: Crop Image by Percentage ---
def crop_image_by_percent(image, crop_top_percent=0.0, crop_bottom_percent=0.0):
    """
    Crops the top and/or bottom portion of an image based on percentage.

    Args:
        image: The input image (NumPy array).
        crop_top_percent: Percentage of height to crop from the top (0-100).
        crop_bottom_percent: Percentage of height to crop from the bottom (0-100).

    Returns:
        The cropped image (NumPy array), or the original image if cropping is not needed
        or percentages are invalid. Returns None if the input image is invalid.
    """
    if image is None or image.size == 0:
        # print("Warning: Invalid input image to crop_image_by_percent.")
        return None # Return None for invalid input

    if crop_top_percent < 0 or crop_top_percent > 100 or \
         crop_bottom_percent < 0 or crop_bottom_percent > 100:
        print(f"Warning: Invalid crop percentages ({crop_top_percent}%, {crop_bottom_percent}%). Must be between 0 and 100. Skipping crop.")
        return image

    if crop_top_percent == 0 and crop_bottom_percent == 0:
        return image # No cropping needed

    if crop_top_percent + crop_bottom_percent >= 100:
        print(f"Warning: Total crop percentage ({crop_top_percent + crop_bottom_percent}%) is 100% or more. Skipping crop.")
        return image

    try:
        h, w = image.shape[:2]

        pixels_to_crop_top = int(h * crop_top_percent / 100.0)
        pixels_to_crop_bottom = int(h * crop_bottom_percent / 100.0)

        start_row = pixels_to_crop_top
        end_row = h - pixels_to_crop_bottom

        # Ensure indices are valid after calculation
        if start_row >= end_row or start_row < 0 or end_row > h:
             print(f"Warning: Invalid calculated crop rows (start={start_row}, end={end_row} for height={h}). Skipping crop.")
             return image

        cropped_image = image[start_row:end_row, :]
        # print(f"Debug: Cropped by percentage from {image.shape} to {cropped_image.shape}")
        return cropped_image
    except Exception as e:
        print(f"Unexpected error during percentage cropping: {e}. Returning original image.")
        traceback.print_exc()
        return image

# --- Helper Function: Crop Black Borders ---
def crop_black_borders(image, enable_cropping=True, strict_no_black_edges=False):
    """
    Crops black borders (or transparent borders for BGRA) from an image.

    Args:
        image: The input image (NumPy array).
        enable_cropping: If False, returns the original image.
        strict_no_black_edges: If True, iteratively removes any remaining single black/transparent
                                 pixel lines from the edges after the initial crop.

    Returns:
        The cropped image (NumPy array), or the original image if cropping is disabled.
        Returns None if the input is invalid or strict cropping removes everything.
    """
    if not enable_cropping:
        return image
    if image is None or image.size == 0:
        return None

    try:
        mask_coords_found = False
        coords = None

        # Check Alpha Channel first 
        if len(image.shape) == 3 and image.shape[2] == 4:
            # If BGRA, use the Alpha channel to find the bounding box
            alpha_channel = image[:, :, 3]
            coords = cv2.findNonZero(alpha_channel)
            if coords is not None:
                mask_coords_found = True

        # Fallback: Attempt grayscale conversion (for BGR)
        elif len(image.shape) == 3 and image.shape[2] == 3:
            try:
                gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                coords = cv2.findNonZero(gray)
                if coords is not None:
                    mask_coords_found = True
            except cv2.error as e_gray:
                # print(f"Note: cvtColor to GRAY failed ({e_gray}), trying mask method.")
                gray = None # Reset gray if conversion failed
        elif len(image.shape) == 2:
            gray = image # Already grayscale
            coords = cv2.findNonZero(gray)
            if coords is not None:
                mask_coords_found = True

        # Fallback: Use mask if grayscale failed or shape is unusual
        if not mask_coords_found:
            try:
                # Create a mask where any channel/value is > 0
                mask = np.any(image > 0, axis=-1) if len(image.shape) == 3 else (image > 0)
                coords = cv2.findNonZero(mask.astype(np.uint8))
                if coords is not None:
                    mask_coords_found = True
            except Exception as e_crop_fallback:
                # print(f"Could not create mask for cropping fallback: {e_crop_fallback}. Returning original.")
                return image # Cannot proceed if mask fails too

        if not mask_coords_found or coords is None:
            # print("Debug: No non-black pixels found via any method, returning original.")
            return image # Return original if all black or coords failed

        x, y, w, h = cv2.boundingRect(coords)
        if w <= 0 or h <= 0:
            # print(f"Debug: Invalid bounding rect ({w}x{h}), returning original.")
            return image

        # Initial crop based on bounding rectangle
        cropped_image = image[y:y+h, x:x+w]

        # --- START: Strict Edge Cropping Logic ---
        if strict_no_black_edges and cropped_image is not None and cropped_image.size > 0:
            # Iteratively remove black edges until none remain or image is empty
            initial_shape = cropped_image.shape
            iterations = 0
            MAX_ITERATIONS = max(initial_shape) # Safety break
            while iterations < MAX_ITERATIONS:
                iterations += 1
                # Re-check size in loop
                if cropped_image is None or cropped_image.size == 0:
                    # print("Debug: Strict cropping resulted in empty image.")
                    return None # Image got cropped away entirely

                # Check current edges
                h_cr, w_cr = cropped_image.shape[:2]
                if h_cr <= 1 or w_cr <= 1:
                    break 

                # Extract edges depending on channels
                if len(cropped_image.shape) == 3 and cropped_image.shape[2] == 4:
                     # Use Alpha for strict check
                     top_row = cropped_image[0, :, 3]
                     bottom_row = cropped_image[-1, :, 3]
                     left_col = cropped_image[:, 0, 3]
                     right_col = cropped_image[:, -1, 3]
                elif len(cropped_image.shape) == 3:
                     # Convert to gray
                     try:
                        gray_cropped = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2GRAY)
                     except:
                         # print("Warning: Failed to convert to gray during strict crop, stopping strict loop.")
                         break # Stop if conversion fails
                     top_row = gray_cropped[0, :]
                     bottom_row = gray_cropped[-1, :]
                     left_col = gray_cropped[:, 0]
                     right_col = gray_cropped[:, -1]
                else:
                     # Grayscale/Single channel
                     top_row = cropped_image[0, :]
                     bottom_row = cropped_image[-1, :]
                     left_col = cropped_image[:, 0]
                     right_col = cropped_image[:, -1]

                top_has_void = np.any(top_row == 0)
                bottom_has_void = np.any(bottom_row == 0)
                left_has_void = np.any(left_col == 0)
                right_has_void = np.any(right_col == 0)
                
                # If no edges have void, we are done
                if not (top_has_void or bottom_has_void or left_has_void or right_has_void):
                    # print(f"Debug: Strict cropping finished after {iterations-1} adjustments.")
                    break # Exit the while loop

                # Adjust cropping
                y_start_new, y_end_new = 0, h_cr
                x_start_new, x_end_new = 0, w_cr

                if top_has_void:
                    y_start_new += 1
                if bottom_has_void:
                    y_end_new -= 1
                if left_has_void:
                    x_start_new += 1
                if right_has_void:
                    x_end_new -= 1
                    
                # Check if new bounds are valid before slicing
                if y_start_new < y_end_new and x_start_new < x_end_new:
                    cropped_image = cropped_image[y_start_new:y_end_new, x_start_new:x_end_new]
                else:
                    # print("Debug: Strict cropping bounds became invalid, stopping.")
                    cropped_image = None # Signal that cropping failed
                    break # Exit loop

            if iterations >= MAX_ITERATIONS:
                 print("Warning: Strict cropping reached max iterations, potential issue.")
            if cropped_image is not None and initial_shape != cropped_image.shape:
                 print(f"Info: Strict cropping adjusted size from {initial_shape} to {cropped_image.shape}")
        # --- END: Strict Edge Cropping Logic ---

        return cropped_image # Return the potentially strictly cropped image

    except cv2.error as e:
        print(f"OpenCV Error during black border cropping: {e}. Returning uncropped image.")
        return image
    except Exception as e:
        print(f"Unexpected error during black border cropping: {e}. Returning uncropped image.")
        traceback.print_exc()
        return image

# --- Helper Function: Multi-Band Blending ---
def multi_band_blending(img1, img2, mask, num_levels=5):
    # img1, img2: The two images to blend (float32). Can be 3 or 4 channels (BGR or BGRA).
    # mask: The blending mask (float32, 0 to 1 transition, full canvas size, representing weight for img1)
    # num_levels: Number of pyramid levels
    log_message = "" # Add local logging if needed

    # Ensure inputs are float32 (caller should ensure this, but double check)
    if img1.dtype != np.float32:
        img1 = img1.astype(np.float32)
    if img2.dtype != np.float32:
        img2 = img2.astype(np.float32)

    if mask.dtype != np.float32:
        log_message = log_and_print(f"Warning: Mask input to multi_band_blending was {mask.dtype}, converting to float32.\n", log_message)
        if mask.max() > 1: # Assuming uint8 if max > 1
            mask = mask.astype(np.float32) / 255.0
        else: # Assuming already float but maybe not float32
            mask = mask.astype(np.float32)

    # Handle Channel Expansion for Mask
    # Ensure mask has same number of channels as images
    num_channels = img1.shape[2] if len(img1.shape) == 3 else 1
    
    if len(mask.shape) == 2 and len(img1.shape) == 3:
        if num_channels == 4:
            mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGRA) # Expand to 4 channels
        else:
            mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)  # Expand to 3 channels
    elif len(mask.shape) == 3 and mask.shape[2] == 1 and len(img1.shape) == 3:
         if num_channels == 4:
            mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGRA)
         else:
            mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

    # 1. Build Gaussian pyramids for img1, img2
    gp1 = [img1]
    gp2 = [img2]
    # Temporary list to store pyrDown results to avoid modifying list during iteration
    gp1_next = []
    gp2_next = []
    actual_levels = 0
    for i in range(num_levels):
        prev_h, prev_w = gp1[-1].shape[:2]
        if prev_h < 2 or prev_w < 2:
            log_message = log_and_print(f"Warning: Stopping image pyramid build at level {i} due to small size ({prev_h}x{prev_w}).\n", log_message)
            break # Stop building pyramids for images

        try:
            down1 = cv2.pyrDown(gp1[-1])
            down2 = cv2.pyrDown(gp2[-1])
            gp1_next.append(down1)
            gp2_next.append(down2)
            actual_levels += 1 # Increment count of successfully built levels
        except cv2.error as e_pyrdown:
            log_message = log_and_print(f"Error during pyrDown at level {i+1}: {e_pyrdown}. Stopping pyramid build.\n", log_message)
            break # Stop if pyrDown fails
        
    # Update the main lists after the loop
    gp1.extend(gp1_next); del gp1_next
    gp2.extend(gp2_next); del gp2_next
    gc.collect()
    
    # Adjust num_levels to the actual number built
    num_levels = actual_levels
    
    # If pyramid build failed completely or input was too small
    if num_levels == 0:
        log_message = log_and_print("Error: Cannot build any pyramid levels. Using simple weighted average.\n", log_message)
        blended_img = img1 * mask + img2 * (1.0 - mask)
        blended_img = np.clip(blended_img, 0, 255).astype(np.uint8)
        # print(log_message) # Optional: print warnings
        if 'gp1' in locals(): del gp1
        if 'gp2' in locals(): del gp2
        gc.collect()
        return blended_img # Fallback

    # 2. Build Laplacian pyramids for img1, img2
    # Smallest Gaussian level acts as base of Laplacian pyramid
    lp1 = [gp1[num_levels]]
    lp2 = [gp2[num_levels]]
    for i in range(num_levels, 0, -1):
        # Target size is the size of the *next larger* Gaussian level
        target_size = (gp1[i-1].shape[1], gp1[i-1].shape[0])
        # log_message = log_and_print(f"Using resize instead of pyrUp for Laplacian level {i}\n", log_message) # Optional log
        ge1 = cv2.resize(gp1[i], target_size, interpolation=cv2.INTER_LINEAR)
        ge2 = cv2.resize(gp2[i], target_size, interpolation=cv2.INTER_LINEAR)

        # Ensure dimensions match EXACTLY before subtraction
        # Sometimes pyrUp result might be 1 pixel off from the actual gp[i-1] size
        h_target, w_target = gp1[i-1].shape[:2]
        h_ge, w_ge = ge1.shape[:2]

        # Crop or pad ge1/ge2 to match gp1[i-1]/gp2[i-1] dimensions
        if ge1.shape[:2] != (h_target, w_target):
            #print(f"Level {i} pyrUp/resize shape mismatch: ge1={ge1.shape}, target={gp1[i-1].shape}. Adjusting ge1.")
            ge1_adj = np.zeros_like(gp1[i-1], dtype=ge1.dtype)
            copy_h = min(h_target, h_ge)
            copy_w = min(w_target, w_ge)
            ge1_adj[:copy_h, :copy_w] = ge1[:copy_h, :copy_w]
            ge1 = ge1_adj
            del ge1_adj

        if ge2.shape[:2] != (h_target, w_target):
            #print(f"Level {i} pyrUp/resize shape mismatch: ge2={ge2.shape}, target={gp2[i-1].shape}. Adjusting ge2.")
            ge2_adj = np.zeros_like(gp2[i-1], dtype=ge2.dtype)
            copy_h = min(h_target, ge2.shape[0]) # Use ge2.shape[0] here
            copy_w = min(w_target, ge2.shape[1]) # Use ge2.shape[1] here
            ge2_adj[:copy_h, :copy_w] = ge2[:copy_h, :copy_w]
            ge2 = ge2_adj
            del ge2_adj


        # Calculate Laplacian: Higher resolution Gaussian - Expanded lower resolution Gaussian
        laplacian1 = cv2.subtract(gp1[i-1], ge1)
        laplacian2 = cv2.subtract(gp2[i-1], ge2)
        lp1.append(laplacian1)
        lp2.append(laplacian2)
        del ge1, ge2, laplacian1, laplacian2
        gc.collect()
        
    # del gp1, gp2
    # gc.collect()

    # lp1/lp2 lists are now [SmallestGaussian, LapN, LapN-1, ..., Lap1] (N=num_levels)
    lp1.reverse() # Reverse to [Lap1, ..., LapN, SmallestGaussian]
    lp2.reverse()

    # 3. Build Gaussian pyramid for the mask
    gm = [mask]
    gm_next = []
    actual_mask_levels = 0
    for i in range(num_levels): # Build mask pyramid only up to the actual image levels
        prev_h, prev_w = gm[-1].shape[:2]
        if prev_h < 2 or prev_w < 2:
            log_message = log_and_print(f"Warning: Stopping mask pyramid build at level {i}.\n", log_message)
            # num_levels should already be adjusted, but ensure mask levels don't exceed
            break
        try:
            down_mask = cv2.pyrDown(gm[-1])
            gm_next.append(down_mask)
            actual_mask_levels += 1
        except cv2.error as e_pyrdown_mask:
            log_message = log_and_print(f"Error during mask pyrDown at level {i+1}: {e_pyrdown_mask}. Stopping mask pyramid build.\n", log_message)
            break

    gm.extend(gm_next); del gm_next
    gc.collect()

    # Ensure mask pyramid has the same number of levels as laplacian (+ base)
    if len(gm) != num_levels + 1:
        log_message = log_and_print(f"Error: Mask pyramid levels ({len(gm)}) does not match expected ({num_levels + 1}). Using simple average.\n", log_message)
        # Fallback if mask pyramid construction failed unexpectedly
        blended_img = img1 * mask + img2 * (1.0 - mask)
        blended_img = np.clip(blended_img, 0, 255).astype(np.uint8)
        if 'lp1' in locals(): del lp1
        if 'lp2' in locals(): del lp2
        if 'gm' in locals(): del gm
        gc.collect()
        return blended_img


    # 4. Blend Laplacian levels
    ls = [] # Blended Laplacian pyramid
    for i in range(num_levels): # Blend Lap1 to LapN
        lap1 = lp1[i]
        lap2 = lp2[i]
        mask_level = gm[i] # Use corresponding mask level (gm[0] for lp1[0]=Lap1, etc.)

        # Ensure mask shape matches laplacian shape for this level
        if mask_level.shape[:2] != lap1.shape[:2]:
            # print(f"Level {i} mask/lap shape mismatch: mask={mask_level.shape}, lap={lap1.shape}. Resizing mask.")
            mask_level = cv2.resize(mask_level, (lap1.shape[1], lap1.shape[0]), interpolation=cv2.INTER_LINEAR)
            
            # Ensure channels match after resize
            if len(mask_level.shape) == 2 and len(lap1.shape) == 3:
                if num_channels == 4:
                    mask_level = cv2.cvtColor(mask_level, cv2.COLOR_GRAY2BGRA)
                else:
                    mask_level = cv2.cvtColor(mask_level, cv2.COLOR_GRAY2BGR)
            elif len(mask_level.shape) == 3 and mask_level.shape[2] == 1 and len(lap1.shape) == 3:
                if num_channels == 4:
                    mask_level = cv2.cvtColor(mask_level, cv2.COLOR_GRAY2BGRA)
                else:
                    mask_level = cv2.cvtColor(mask_level, cv2.COLOR_GRAY2BGR)
            # Clip mask just in case resize interpolation goes slightly out of [0,1]
            mask_level = np.clip(mask_level, 0.0, 1.0)


        # Blend: L = L1*Gm + L2*(1-Gm)
        blended_lap = lap1 * mask_level + lap2 * (1.0 - mask_level)
        ls.append(blended_lap)
        del lap1, lap2, mask_level, blended_lap
        gc.collect()

    # Blend the smallest Gaussian level (base of the pyramid)
    base1 = lp1[num_levels] # Smallest Gaussian stored at the end of reversed lp1
    base2 = lp2[num_levels]
    mask_base = gm[num_levels] # Use the smallest mask (corresponding to the smallest Gaussian level)
    if mask_base.shape[:2] != base1.shape[:2]:
        # print(f"Base level mask/base shape mismatch: mask={mask_base.shape}, base={base1.shape}. Resizing mask.")
        mask_base = cv2.resize(mask_base, (base1.shape[1], base1.shape[0]), interpolation=cv2.INTER_LINEAR)
        # Channel check
        if len(mask_base.shape) == 2 and len(base1.shape) == 3:
             if num_channels == 4:
                 mask_base = cv2.cvtColor(mask_base, cv2.COLOR_GRAY2BGRA)
             else:
                 mask_base = cv2.cvtColor(mask_base, cv2.COLOR_GRAY2BGR)
        elif len(mask_base.shape) == 3 and mask_base.shape[2]==1 and len(base1.shape) == 3:
             if num_channels == 4:
                 mask_base = cv2.cvtColor(mask_base, cv2.COLOR_GRAY2BGRA)
             else:
                 mask_base = cv2.cvtColor(mask_base, cv2.COLOR_GRAY2BGR)
        mask_base = np.clip(mask_base, 0.0, 1.0)

    # Blend the base Gaussian level: B = B1*Gm_N + B2*(1-Gm_N)
    blended_base = base1 * mask_base + base2 * (1.0 - mask_base)
    ls.append(blended_base) # ls is now [BlendedLap1, ..., BlendedLapN, BlendedBase]
    # del lp1, lp2, gm, base1, base2, mask_base, blended_base
    del base1, base2, mask_base, blended_base
    gc.collect()

    # 5. Reconstruct the final image from the blended Laplacian pyramid
    # Start with the smallest blended base
    blended_img = ls[num_levels]
    for i in range(num_levels - 1, -1, -1): # Iterate from N-1 down to 0
        # Target size is the size of the *current* blended Laplacian level (ls[i])
        target_size = (ls[i].shape[1], ls[i].shape[0])
        # log_message = log_and_print(f"Using resize instead of pyrUp for reconstruction level {i}\n", log_message) # Optional log
        expanded_prev = cv2.resize(blended_img, target_size, interpolation=cv2.INTER_LINEAR)

        # Delete previous level's blended_img (important for memory)
        del blended_img
        gc.collect()

        # Ensure dimensions match EXACTLY before adding
        h_target_rec, w_target_rec = ls[i].shape[:2]
        h_exp, w_exp = expanded_prev.shape[:2]
        if expanded_prev.shape[:2] != (h_target_rec, w_target_rec):
            # print(f"Reconstruction level {i} shape mismatch: expanded={expanded_prev.shape}, target={ls[i].shape}. Adjusting expanded.")
            expanded_adj = np.zeros_like(ls[i], dtype=expanded_prev.dtype)
            copy_h_rec = min(h_target_rec, h_exp)
            copy_w_rec = min(w_target_rec, w_exp)
            expanded_adj[:copy_h_rec, :copy_w_rec] = expanded_prev[:copy_h_rec, :copy_w_rec]
            expanded_prev = expanded_adj
            del expanded_adj

        # Add the blended Laplacian for the current level
        current_laplacian = ls[i] # Get reference before add
        blended_img = cv2.add(expanded_prev, current_laplacian)
        del expanded_prev, current_laplacian # Remove laplacian reference ls[i]
        ls[i] = None # Explicitly break the reference in the list too? Might help GC.
        gc.collect()

    # Clip final result and convert back to uint8
    blended_img = np.clip(blended_img, 0, 255)
    blended_img = blended_img.astype(np.uint8)

    # Optional: print warnings collected during the process
    # if log_message: print("MultiBand Blend Logs:\n" + log_message)

    # Cleanup intermediate pyramids (important for memory)
    del gp1, gp2, lp1, lp2, gm, ls
    if 'laplacian1' in locals(): del laplacian1
    if 'laplacian2' in locals(): del laplacian2
    if 'ge1' in locals(): del ge1
    if 'ge2' in locals(): del ge2
    if 'mask_level' in locals(): del mask_level
    if 'base1' in locals(): del base1
    if 'base2' in locals(): del base2
    if 'mask_base' in locals(): del mask_base
    if 'blended_lap' in locals(): del blended_lap
    if 'blended_base' in locals(): del blended_base
    if 'expanded_prev' in locals(): del expanded_prev
    gc.collect()

    return blended_img

# --- Stitching Function: Focus on the pairwise images ---
def stitch_pairwise_images(img_composite, img_new,
                                                         transform_model_str="Homography",
                                                         blend_method="multi-band",
                                                         enable_gain_compensation=True,
                                                         orb_nfeatures=2000,
                                                         match_ratio_thresh=0.75,
                                                         ransac_reproj_thresh=5.0,
                                                         max_distance_coeff=0.5,
                                                         max_blending_width=10000,
                                                         max_blending_height=10000,
                                                         blend_smooth_ksize=15,
                                                         num_blend_levels=4,
                                                         fixed_layer_type="none" # _type: "none", "img1", "img2"
                                                        ):
    """
    Stitches a new image (img_new) onto an existing composite image (img_composite)
    using an explicit, step-by-step pipeline (e.g., ORB features).
    Allows choosing the geometric transformation model.
    Returns the new composite.
    Now handles BGRA (4-channel) images to preserve transparency.
    """
    log_message = log_and_print("--- Starting pairwise stitch between composite and new image (BGRA Mode) ---\n", "")
    start_time_pairwise = time.time()

    # --- Input Validation ---
    if img_composite is None or img_new is None:
        log_message = log_and_print("Error: One or both input images are None for the pairwise stitching step.\n", log_message)
        return None, log_message
    if img_composite.size == 0 or img_new.size == 0:
        log_message = log_and_print("Error: One or both input images are empty for the pairwise stitching step.\n", log_message)
        return None, log_message

    # --- Helper: Ensure 4-Channel BGRA ---
    def ensure_bgra(img):
        if img.ndim == 2: # Grayscale
            return cv2.cvtColor(img, cv2.COLOR_GRAY2BGRA)
        elif img.shape[2] == 3: # BGR
            return cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
        return img # Already BGRA

    # Convert inputs to BGRA
    img_composite = ensure_bgra(img_composite)
    img_new = ensure_bgra(img_new)

    h1, w1 = img_composite.shape[:2]
    h2, w2 = img_new.shape[:2]
    log_message = log_and_print(f"Pairwise Stitch: Img1({w1}x{h1}), Img2({w2}x{h2})\n", log_message)
    log_message = log_and_print(f"Params: Transform={transform_model_str}, ORB Feats={orb_nfeatures}, Ratio Thresh={match_ratio_thresh}\n", log_message)
    log_message = log_and_print(f"Params Cont'd: RANSAC Thresh={ransac_reproj_thresh}, Max Distance Coeff={max_distance_coeff}\n", log_message)
    log_message = log_and_print(f"Blending: Method={blend_method}, GainComp={enable_gain_compensation}, SmoothKSize={blend_smooth_ksize}, MB Levels={num_blend_levels}\n", log_message)

    final_output_img = None # Initialize result variable
    # Initialize other variables to None for better cleanup management
    img1_u8, img2_u8 = None, None
    kp1, des1, kp2, des2 = None, None, None, None
    all_matches, good_matches = None, None
    src_pts, dst_pts = None, None
    H_matrix_3x3_for_canvas = None # Will hold the 3x3 matrix for canvas calculation (Affine or Homography)
    final_warp_M = None # Will hold the actual 2x3 or 3x3 matrix for warping
    mask_trans = None # Mask from estimation function (homography or affine)
    pts1, dst_pts1_transformed = None, None
    pts2, all_pts = None, None
    output_img = None
    warped_img1_u8 = None
    mask_warped, mask_img2, overlap_mask = None, None, None
    gain_applied_warped_img1_u8 = None
    output_img_before_mb_float, blend_mask_float = None, None
    img1_for_blend, img2_for_blend = None, None
    is_affine = False # Flag to determine warp function

    try:
        # --- Feature Detection and Matching ---
        img1_u8 = img_composite.clip(0, 255).astype(np.uint8) if img_composite.dtype != np.uint8 else img_composite
        img2_u8 = img_new.clip(0, 255).astype(np.uint8) if img_new.dtype != np.uint8 else img_new

        # Use Grayscale for Feature Detection (ORB doesn't need Alpha)
        img1_gray = cv2.cvtColor(img1_u8, cv2.COLOR_BGRA2GRAY)
        img2_gray = cv2.cvtColor(img2_u8, cv2.COLOR_BGRA2GRAY)

        orb = cv2.ORB_create(nfeatures=orb_nfeatures)
        kp1, des1 = orb.detectAndCompute(img1_gray, None) # keypoints and descriptors
        kp2, des2 = orb.detectAndCompute(img2_gray, None)
        
        # Cleanup gray images used for detection
        del img1_gray, img2_gray
        gc.collect()

        if des1 is None or des2 is None or len(kp1) < 2 or len(kp2) < 2:
            log_message = log_and_print("Error: Not enough keypoints or descriptors found.\n", log_message)
            if 'kp1' in locals(): del kp1
            if 'des1' in locals(): del des1
            if 'kp2' in locals(): del kp2
            if 'des2' in locals(): del des2
            del img1_u8, img2_u8
            gc.collect()
            return None, log_message
        log_message = log_and_print(f"Found {len(kp1)} keypoints in Img1, {len(kp2)} in Img2.\n", log_message)

        bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False)
        # Check if descriptors are suitable for knnMatch (should be if ORB)
        if des1.dtype != np.uint8:
            des1 = des1.astype(np.uint8)
        if des2.dtype != np.uint8:
            des2 = des2.astype(np.uint8)
        all_matches = bf.knnMatch(des1, des2, k=2)
        del des1, des2; des1, des2 = None, None # Explicit delete
        gc.collect()

        good_matches = []
        if all_matches is not None:
            MAX_DISTANCE = max_distance_coeff * np.sqrt(w1**2 + h1**2)
            # Filter out potential empty match pairs
            valid_matches = [pair for pair in all_matches if isinstance(pair, (list, tuple)) and len(pair) == 2]
            for m, n in valid_matches:
                if m.distance < match_ratio_thresh * n.distance:
                    src_pt = np.array(kp1[m.queryIdx].pt)
                    dst_pt = np.array(kp2[m.trainIdx].pt)
                    distance = np.linalg.norm(dst_pt - src_pt)

                    if distance < MAX_DISTANCE:
                        good_matches.append(m)
            del valid_matches
        del all_matches; all_matches = None
        gc.collect()

        log_message = log_and_print(f"Found {len(good_matches)} good matches after ratio test.\n", log_message)
        MIN_MATCH_COUNT = 10 # Keep a minimum threshold

        # --- Transformation Estimation (Homography or Affine) ---
        if len(good_matches) >= MIN_MATCH_COUNT:
            src_pts = np.float32([ kp1[m.queryIdx].pt for m in good_matches ]).reshape(-1,1,2)
            dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good_matches ]).reshape(-1,1,2)
            del kp1, kp2, good_matches; kp1, kp2, good_matches = None, None, None # Explicit delete
            gc.collect()

            estimation_failed = False
            # Try Affine if selected
            if transform_model_str == "Affine_Partial" or transform_model_str == "Affine_Full":
                is_affine = True # Assume success initially
                affine_matrix_2x3 = None
                mask_a = None
                try:
                    if transform_model_str == "Affine_Partial":
                        log_message = log_and_print(f"Attempting Affine Partial Estimation (RANSAC Thresh={ransac_reproj_thresh})...\n", log_message)
                        affine_matrix_2x3, mask_a = cv2.estimateAffinePartial2D(src_pts, dst_pts, method=cv2.RANSAC, ransacReprojThreshold=ransac_reproj_thresh)
                    else: # Affine_Full
                        log_message = log_and_print(f"Attempting Affine Full Estimation (RANSAC Thresh={ransac_reproj_thresh})...\n", log_message)
                        affine_matrix_2x3, mask_a = cv2.estimateAffine2D(src_pts, dst_pts, method=cv2.RANSAC, ransacReprojThreshold=ransac_reproj_thresh)

                    if affine_matrix_2x3 is None:
                        raise ValueError(f"{transform_model_str} estimation returned None")

                    # Convert 2x3 affine to 3x3 for canvas calculation consistency
                    H_matrix_3x3_for_canvas = np.vstack([affine_matrix_2x3, [0, 0, 1]]).astype(np.float64)
                    final_warp_M = affine_matrix_2x3.astype(np.float64) # Keep 2x3 for warpAffine
                    mask_trans = mask_a # Store the mask

                except Exception as e_affine:
                    log_message = log_and_print(f"Error during {transform_model_str} estimation: {e_affine}. Falling back to Homography.\n", log_message)
                    is_affine = False # Reset flag, will proceed to Homography block below
                    estimation_failed = True # Mark that the chosen affine failed
                    # Clean up affine specific vars if they exist
                    if 'affine_matrix_2x3' in locals():
                        del affine_matrix_2x3
                    if 'mask_a' in locals():
                        del mask_a
                    H_matrix_3x3_for_canvas = None
                    final_warp_M = None
                    mask_trans = None
                    # NOTE: We are choosing to fall back instead of returning None immediately.
                    # If you prefer to fail hard if the selected affine fails, uncomment the next line:
                    # return None, log_message
            
            # Try Homography if selected OR if Affine failed and we are falling back
            if not is_affine or estimation_failed: # If Homography was chosen or Affine failed
                if estimation_failed: # Log if we are falling back
                    log_message = log_and_print("Falling back to Homography estimation...\n", log_message)
                else: # Log if Homography was the original choice
                    log_message = log_and_print("Attempting Homography Estimation...\n", log_message)

                is_affine = False # Ensure flag is False for Homography path
                H_matrix_homog = None
                mask_h = None
                try:
                    log_message = log_and_print(f"Estimating Homography (RANSAC Thresh={ransac_reproj_thresh})...\n", log_message)
                    H_matrix_homog, mask_h = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, ransacReprojThreshold=ransac_reproj_thresh)
                    if H_matrix_homog is None:
                        raise ValueError("Homography estimation returned None")

                    H_matrix_3x3_for_canvas = H_matrix_homog.astype(np.float64) # Use this for canvas calc
                    final_warp_M = H_matrix_homog.astype(np.float64) # Use 3x3 for warpPerspective
                    mask_trans = mask_h # Store the mask

                except Exception as e_homog:
                    log_message = log_and_print(f"Error during Homography estimation: {e_homog}\n", log_message)
                    # Clean up if Homography itself fails
                    if 'H_matrix_homog' in locals():
                        del H_matrix_homog
                    if 'mask_h' in locals():
                        del mask_h
                    del src_pts, dst_pts
                    gc.collect()
                    return None, log_message # Fail if Homography (chosen or fallback) fails

            # --- Log Inliers from the successful estimation ---
            model_name = "Affine" if is_affine else "Homography"
            if mask_trans is not None:
                inlier_count = np.sum(mask_trans)
                log_message = log_and_print(f"{model_name} estimated with {inlier_count} inliers.\n", log_message)
                if inlier_count < MIN_MATCH_COUNT:
                    log_message = log_and_print(f"Warning: Inlier count ({inlier_count}) < MIN_MATCH_COUNT for {model_name}. Result might be poor.\n", log_message)
                del mask_trans; mask_trans = None # Delete the mask now
                gc.collect()
            else:
                log_message = log_and_print(f"Warning: {model_name} mask was None.\n", log_message)


            # --- Cleanup source/destination points ---
            del src_pts, dst_pts; src_pts, dst_pts = None, None
            gc.collect()

            # --- Canvas Calculation and Warping ---
            pts1 = np.float32([[0,0],[0,h1-1],[w1-1,h1-1],[w1-1,0]]).reshape(-1,1,2)
            try:
                # Use the 3x3 matrix (derived from affine or directly from homography) for perspectiveTransform
                # Ensure it's float64
                if H_matrix_3x3_for_canvas.dtype != np.float64:
                    H_matrix_3x3_for_canvas = H_matrix_3x3_for_canvas.astype(np.float64)
                dst_pts1_transformed = cv2.perspectiveTransform(pts1, H_matrix_3x3_for_canvas)
                if dst_pts1_transformed is None:
                    raise ValueError("perspectiveTransform returned None")
            except Exception as e_tf:
                model_name_tf = "Affine-derived" if is_affine else "Homography"
                log_message = log_and_print(f"Error during perspectiveTransform (using {model_name_tf} 3x3 matrix): {e_tf}\n", log_message)
                # Clean up before returning
                del pts1
                if 'H_matrix_3x3_for_canvas' in locals(): del H_matrix_3x3_for_canvas
                if 'final_warp_M' in locals(): del final_warp_M # Was holding the warp matrix
                gc.collect()
                return None, log_message
            del pts1; pts1 = None

            pts2 = np.float32([[0,0],[0,h2-1],[w2-1,h2-1],[w2-1,0]]).reshape(-1,1,2)
            # Ensure dst_pts1_transformed is float32 for concatenation if needed
            all_pts = np.concatenate((pts2, dst_pts1_transformed.astype(np.float32)), axis=0)
            del pts2, dst_pts1_transformed; pts2, dst_pts1_transformed = None, None

            padding = 2
            x_min, y_min = np.int32(all_pts.min(axis=0).ravel() - padding)
            x_max, y_max = np.int32(all_pts.max(axis=0).ravel() + padding)
            del all_pts; all_pts = None
            gc.collect()

            translation_dist = [-x_min, -y_min]
            H_translation = np.array([[1, 0, translation_dist[0]], [0, 1, translation_dist[1]], [0,0,1]], dtype=np.float64)

            output_width = x_max - x_min
            output_height = y_max - y_min

            if output_width <= 0 or output_height <= 0 or output_width > max_blending_width or output_height > max_blending_height:
                log_message = log_and_print(f"Error: Invalid output dimensions ({output_width}x{output_height}). Max allowed ({max_blending_width}x{max_blending_height})\n", log_message)
                # Clean up before returning
                if 'H_matrix_3x3_for_canvas' in locals():
                    del H_matrix_3x3_for_canvas
                if 'final_warp_M' in locals():
                    del final_warp_M
                if 'H_translation' in locals():
                    del H_translation
                gc.collect()
                return None, log_message

            log_message = log_and_print(f"Calculated canvas size: {output_width}x{output_height}\n", log_message)

            # --- Memory Check for Blending ---
            canvas_pixels = output_width * output_height
            # Define a threshold based on available memory, e.g., 250 million pixels
            # 15000*15000 = 225M, 30000*15000 = 450M
            pixel_threshold = 225_000_000
            effective_blend_method = blend_method

            if blend_method == "multi-band" and canvas_pixels > pixel_threshold:
                log_message = log_and_print(f"Warning: Canvas size ({output_width}x{output_height}, {canvas_pixels/1e6:.1f}M pixels) exceeds threshold ({pixel_threshold/1e6:.1f}M pixels) for multi-band blending.\n", log_message)
                log_message = log_and_print("Switching to 'Linear' blending for this step to conserve memory.\n", log_message)
                effective_blend_method = "linear"

            # Create output canvas - 4 Channels (BGRA)
            output_img = np.zeros((output_height, output_width, 4), dtype=np.uint8)

            # --- Calculate final transformation matrix for warping ---
            # This incorporates the translation onto the canvas
            final_warp_matrix_translated = None
            if is_affine:
                # We need the 2x3 matrix: (H_translation @ H_affine_3x3)[:2,:]
                final_warp_matrix_translated = (H_translation @ H_matrix_3x3_for_canvas)[:2, :]
            else:
                # We need the 3x3 matrix: H_translation @ H_homography_3x3
                final_warp_matrix_translated = H_translation @ H_matrix_3x3_for_canvas # H_matrix_3x3 holds the homography here

            # --- Warp img1 onto the canvas ---
            try:
                # Use borderValue=(0,0,0,0) for transparent borders
                if is_affine:
                    log_message = log_and_print("Warping image 1 using warpAffine (BGRA)...\n", log_message)
                    warped_img1_u8 = cv2.warpAffine(img1_u8, final_warp_matrix_translated, (output_width, output_height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0,0))
                else:
                    log_message = log_and_print("Warping image 1 using warpPerspective (BGRA)...\n", log_message)
                    warped_img1_u8 = cv2.warpPerspective(img1_u8, final_warp_matrix_translated, (output_width, output_height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0,0))
            except cv2.error as e_warp:
                 warp_type = 'Affine' if is_affine else 'Perspective'
                 log_message = log_and_print(f"Error during warping ({warp_type}): {e_warp}\n", log_message)
                 # Clean up before returning
                 if 'H_matrix_3x3_for_canvas' in locals():
                     del H_matrix_3x3_for_canvas
                 # final_warp_M was the matrix before translation
                 if 'final_warp_matrix_translated' in locals():
                     del final_warp_matrix_translated
                 if 'H_translation' in locals():
                     del H_translation
                 if 'img1_u8' in locals():
                     del img1_u8
                 if 'output_img' in locals():
                     del output_img
                 gc.collect()
                 return None, log_message

            # --- Clean up matrices and source image ---
            del H_matrix_3x3_for_canvas, H_translation, final_warp_matrix_translated, img1_u8
            # Note: final_warp_M (the untranslated matrix) is no longer needed
            if 'final_warp_M' in locals():
                del final_warp_M
            gc.collect()

            # Place img2 onto the canvas
            y_start, x_start = translation_dist[1], translation_dist[0]
            y_end, x_end = y_start + h2, x_start + w2

            # Define slicing for img2 read and canvas write, handling out-of-bounds placement
            img2_y_start, img2_x_start = 0, 0
            img2_y_end, img2_x_end = h2, w2
            canvas_y_start, canvas_x_start = y_start, x_start
            canvas_y_end, canvas_x_end = y_end, x_end
            # Clip coordinates
            if canvas_y_start < 0:
                img2_y_start = -canvas_y_start; canvas_y_start = 0
            if canvas_x_start < 0:
                img2_x_start = -canvas_x_start; canvas_x_start = 0
            if canvas_y_end > output_height:
                img2_y_end = h2 - (canvas_y_end - output_height); canvas_y_end = output_height
            if canvas_x_end > output_width:
                img2_x_end = w2 - (canvas_x_end - output_width); canvas_x_end = output_width

            # Check if the calculated slices are valid
            slice_h_canvas = canvas_y_end - canvas_y_start
            slice_w_canvas = canvas_x_end - canvas_x_start
            slice_h_img2 = img2_y_end - img2_y_start
            slice_w_img2 = img2_x_end - img2_x_start

            mask_img2 = np.zeros(output_img.shape[:2], dtype=np.uint8) # Mask for img2 placement
            img2_part = None
            if slice_h_canvas > 0 and slice_w_canvas > 0 and slice_h_canvas == slice_h_img2 and slice_w_canvas == slice_w_img2:
                img2_part = img2_u8[img2_y_start:img2_y_end, img2_x_start:img2_x_end]
                output_img[canvas_y_start:canvas_y_end, canvas_x_start:canvas_x_end] = img2_part
                # Mask based on Alpha channel of img2
                mask_img2[canvas_y_start:canvas_y_end, canvas_x_start:canvas_x_end] = (img2_part[:, :, 3] > 0).astype(np.uint8) * 255
            else:
                log_message = log_and_print("Warning: Could not place img2 correctly onto the canvas.\n", log_message)
            del img2_u8
            img2_u8 = None # Input img2 no longer needed
            gc.collect()

            # --- Create Masks for Blending ---
            # Create mask for the warped image 1 using Alpha Channel
            if warped_img1_u8 is not None:
                # Check alpha channel (index 3)
                mask_warped = (warped_img1_u8[:, :, 3] > 0).astype(np.uint8) * 255
                # Erode the warped mask slightly to remove semi-transparent edge artifacts
                # This removes the 1-pixel border caused by linear interpolation blending with transparency.
                erosion_kernel = np.ones((3, 3), np.uint8)
                mask_warped = cv2.erode(mask_warped, erosion_kernel, iterations=3)
            else:
                mask_warped = np.zeros(output_img.shape[:2], dtype=np.uint8) # Empty mask if warp failed

            # Find overlapping region mask (uint8 0 or 255)
            overlap_mask = cv2.bitwise_and(mask_warped, mask_img2)
            has_overlap = np.sum(overlap_mask > 0) > 0 # Check if any pixel > 0
            log_message = log_and_print(f"Overlap detected: {has_overlap}\n", log_message)

            # --- Gain Compensation ---
            gain = 1.0
            gain_applied_warped_img1_u8 = warped_img1_u8 # Initialize with original warped image

            if enable_gain_compensation and has_overlap and warped_img1_u8 is not None: # Need warped image for gain comp
                log_message = log_and_print("Gain Compensation Enabled. Calculating gain...\n", log_message)
                try:
                    # --- Gain Calculation (Slice Logic for BGRA) ---
                    # Convert BGRA to GRAY for calculation
                    gray_warped_for_gain = cv2.cvtColor(warped_img1_u8, cv2.COLOR_BGRA2GRAY)
                    img2_gray = np.zeros_like(gray_warped_for_gain)
                    # Use the exact slice coordinates derived from placement step
                    if slice_h_canvas > 0 and slice_w_canvas > 0:
                        if 0 <= canvas_y_start < canvas_y_end <= output_height and \
                           0 <= canvas_x_start < canvas_x_end <= output_width:
                            # Slice from output_img (which is BGRA)
                            img_to_convert = output_img[canvas_y_start:canvas_y_end, canvas_x_start:canvas_x_end]
                            
                            if img_to_convert.size > 0:
                                # Convert Slice from BGRA to GRAY
                                img2_part_gray = cv2.cvtColor(img_to_convert, cv2.COLOR_BGRA2GRAY)
                                img2_gray[canvas_y_start:canvas_y_end, canvas_x_start:canvas_x_end] = img2_part_gray
                                del img2_part_gray
                            else: 
                                log_message = log_and_print("Warning: Empty slice for gain calculation img2_gray.\n", log_message)
                        else: 
                            log_message = log_and_print("Warning: Invalid slice indices for gain calculation img2_gray.\n", log_message)

                    overlap_mask_gain = overlap_mask # Use the already computed overlap mask
                    # Ensure masks are single channel before bitwise_and
                    
                    gray_warped_roi = cv2.bitwise_and(gray_warped_for_gain, gray_warped_for_gain, mask=overlap_mask_gain)
                    img2_roi = cv2.bitwise_and(img2_gray, img2_gray, mask=overlap_mask_gain)
                    del gray_warped_for_gain, img2_gray

                    overlap_pixel_count = np.sum(overlap_mask_gain > 0)
                    if overlap_pixel_count > 0:
                        # Ensure ROIs are valid before calculating sum
                        mean1 = np.sum(gray_warped_roi[overlap_mask_gain > 0]) / overlap_pixel_count if gray_warped_roi is not None else 0
                        mean2 = np.sum(img2_roi[overlap_mask_gain > 0]) / overlap_pixel_count if img2_roi is not None else 0

                        if mean1 > 1e-5 and mean2 > 1e-5:
                            if fixed_layer_type == "img1":
                                # If the composite (Img1) is the base image, do not touch Img1, adjust Img2 instead
                                # We need Img2's brightness to match Img1
                                gain = mean1 / mean2
                                log_message = log_and_print(f"Fixed Base (Img1): Adjusting Img2 brightness to match Base. Gain={gain:.2f}\n", log_message)
                            else:
                                gain = mean2 / mean1
                                log_message = log_and_print(f"Calculated Gain: {gain:.2f}\n", log_message)
                            gain = np.clip(gain, 0.5, 2.0) # Clamp gain
                            log_message = log_and_print(f"Clamped Gain: {gain:.2f}\n", log_message)
                        else:
                            gain = 1.0
                            log_message = log_and_print("Gain compensation skipped (means close to zero or invalid ROI).\n", log_message)
                    else:
                        gain = 1.0
                        log_message = log_and_print("Gain compensation skipped (no overlap pixels).\n", log_message)
                    del gray_warped_roi, img2_roi
                    gc.collect()
                    # --- End Gain Calculation ---

                    # Apply gain ONLY if calculated and different from 1.0
                    if abs(gain - 1.0) > 1e-5: # Check float difference
                        if fixed_layer_type == "img1":
                            # Directly modify the Img2 region in output_img (RGB channels only)
                            # Note: output_img currently contains only Img2 pixels
                            gain_applied_float = output_img.astype(np.float32)
                            gain_applied_float[:, :, :3] *= gain

                            output_img = np.clip(gain_applied_float, 0, 255).astype(np.uint8)
                            gain_applied_warped_img1_u8 = warped_img1_u8
                        else:
                            gain_applied_float = warped_img1_u8.astype(np.float32)
                            # Apply gain to RGB channels (0,1,2), Leave Alpha (3) untouched
                            gain_applied_float[:, :, :3] *= gain
                        
                            # *** Create new array for gain applied result ***
                            temp_gain_applied = gain_applied_float.clip(0, 255).astype(np.uint8)
                            # If gain_applied_warped_img1_u8 wasn't the original, delete it before reassigning
                            if gain_applied_warped_img1_u8 is not warped_img1_u8:
                                del gain_applied_warped_img1_u8
                            gain_applied_warped_img1_u8 = temp_gain_applied # Assign the new gain-applied image

                        del gain_applied_float, temp_gain_applied
                        gc.collect()
                        log_message = log_and_print(f"Gain applied to warped image (RGB channels).\n", log_message)
                    else:
                        log_message = log_and_print("Gain is ~1.0, no gain applied.\n", log_message)

                except Exception as e_gain_calc:
                    gain = 1.0
                    log_message = log_and_print(f"Warning: Error during gain calculation ({e_gain_calc}). Setting gain=1.0.\n", log_message)
                    # Ensure gain_applied remains the original warped image on error
                    if gain_applied_warped_img1_u8 is not warped_img1_u8:
                        del gain_applied_warped_img1_u8 # Delete potentially modified one
                        gc.collect()
                    gain_applied_warped_img1_u8 = warped_img1_u8 # Reset to original
                    # Clean up potential partial variables
                    if 'gray_warped_for_gain' in locals(): del gray_warped_for_gain
                    if 'img2_gray' in locals(): del img2_gray
                    if 'gray_warped_roi' in locals(): del gray_warped_roi
                    if 'img2_roi' in locals(): del img2_roi
                    if 'gain_applied_float' in locals(): del gain_applied_float
                    gc.collect()
            elif warped_img1_u8 is None:
                 log_message = log_and_print("Skipping Gain Compensation as warped image is None.\n", log_message)

            # Ensure gain_applied_warped_img1_u8 holds the image to be used for blending
            # (either original warped or gain-compensated version)

            # --- Blending Choice ---
            # Blend using the potentially gain-compensated image: gain_applied_warped_img1_u8
            if effective_blend_method == "multi-band" and has_overlap and gain_applied_warped_img1_u8 is not None:
                log_message = log_and_print(f"Applying Multi-band blending (Levels={num_blend_levels})...\n", log_message)
                try:
                    # --- Generate Blend Mask using Distance Transform ---
                    log_message = log_and_print("Generating multi-band mask using distance transform...\n", log_message)

                    # Distance Transform needs single channel mask
                    # masks are already single channel uint8
                    
                    dist1 = cv2.distanceTransform(mask_warped, cv2.DIST_L2, 5)
                    dist2 = cv2.distanceTransform(mask_img2, cv2.DIST_L2, 5)

                    # Create float32 weight mask
                    weight1_norm = np.zeros(output_img.shape[:2], dtype=np.float32)
                    
                    # Identify non-overlapping regions (ensure using single channel masks)
                    non_overlap_mask1 = cv2.bitwise_and(mask_warped, cv2.bitwise_not(overlap_mask))
                    non_overlap_mask2 = cv2.bitwise_and(mask_img2, cv2.bitwise_not(overlap_mask))

                    # Assign weights: 1.0 where only img1 exists, 0.0 where only img2 exists
                    weight1_norm[non_overlap_mask1 > 0] = 1.0
                    weight1_norm[non_overlap_mask2 > 0] = 0.0 # Implicitly 0 initially, but good to be explicit
                    
                    # Calculate weights in the overlap region based on relative distance
                    # Weight for img1 = dist1 / (dist1 + dist2)
                    overlap_indices = np.where(overlap_mask > 0)
                    num_overlap_pixels = len(overlap_indices[0])
                    if num_overlap_pixels > 0:
                        d1_overlap = dist1[overlap_indices]
                        d2_overlap = dist2[overlap_indices]
                        total_dist = d1_overlap + d2_overlap
                        # Avoid division by zero where total_dist is very small (deep inside both masks)
                        # If total_dist is near zero, assign weight based on which original mask was stronger?
                        # Using dist1 / (total_dist + epsilon) is simpler and generally works.
                        weights_overlap = d1_overlap / (total_dist + 1e-7) # Epsilon for stability
                        weight1_norm[overlap_indices] = np.clip(weights_overlap, 0.0, 1.0)
                        log_message = log_and_print(f"Calculated distance transform weights for {num_overlap_pixels} overlap pixels.\n", log_message)
                        # If a base image is specified, we force the overlap area to fully show the "top" layer (weight 0 or 1)
                        # This solves the "semi-transparent/ghosting" issue
                        if fixed_layer_type == "img2": 
                            # Img2 is Base, Img1 is Top -> Show Img1 (Weight 1.0)
                            weight1_norm[overlap_indices] = 1.0
                        elif fixed_layer_type == "img1":
                            # Img1 is Base, Img2 is Top -> Show Img2 (Weight 0.0)
                            weight1_norm[overlap_indices] = 0.0
                    else:
                        log_message = log_and_print("Warning: No overlap pixels found for distance transform weight calculation.\n", log_message)
                        
                    # Create boolean masks for later restoration steps
                    mask_warped_binary = (mask_warped > 0)
                    mask_img2_binary = (mask_img2 > 0)
                    overlap_mask_binary = (overlap_mask > 0)
                    
                    # Clean up intermediate arrays from distance transform step
                    del dist1, dist2, non_overlap_mask1, non_overlap_mask2, overlap_indices
                    if 'd1_overlap' in locals():
                        del d1_overlap
                    if 'd2_overlap' in locals():
                        del d2_overlap
                    if 'total_dist' in locals():
                        del total_dist
                    if 'weights_overlap' in locals():
                        del weights_overlap
                    gc.collect()
                    
                    # Apply Smoothing based on blend_smooth_ksize
                    blend_mask_float = weight1_norm # Start with the precise distance-based mask
                    if blend_smooth_ksize > 0 and blend_smooth_ksize % 2 == 1:
                        log_message = log_and_print(f"Smoothing multi-band blend mask with GaussianBlur ksize=({blend_smooth_ksize},{blend_smooth_ksize})...\n", log_message)
                        try:
                            # Need the boolean masks calculated above
                            
                            # Strict non-overlap areas (boolean arrays)
                            strict_non_overlap_mask1 = np.logical_and(mask_warped_binary, np.logical_not(overlap_mask_binary))
                            strict_non_overlap_mask2 = np.logical_and(mask_img2_binary, np.logical_not(overlap_mask_binary))


                            # Blur the original distance-based mask
                            weight1_norm_blurred = cv2.GaussianBlur(weight1_norm, (blend_smooth_ksize, blend_smooth_ksize), 0)

                            # Clip the blurred mask to [0, 1]
                            blend_mask_float_blurred = np.clip(weight1_norm_blurred, 0.0, 1.0)

                            # Assign the potentially blurred values first
                            blend_mask_float = blend_mask_float_blurred

                            # Force 1.0 where only img1 should be
                            blend_mask_float[strict_non_overlap_mask1] = 1.0
                            # Force 0.0 where only img2 should be
                            blend_mask_float[strict_non_overlap_mask2] = 0.0

                            log_message = log_and_print("Multi-band mask smoothed and edges restored.\n", log_message)

                        except Exception as e_blur_other:
                            log_message = log_and_print(f"Warning: Error during multi-band mask blur/restore ({e_blur_other}). Using original distance-based mask.\n", log_message)
                            blend_mask_float = weight1_norm # Fallback
                        finally:
                            # Clean up intermediate variables created in this block
                            if 'strict_non_overlap_mask1' in locals(): del strict_non_overlap_mask1
                            if 'strict_non_overlap_mask2' in locals(): del strict_non_overlap_mask2
                            if 'weight1_norm_blurred' in locals(): del weight1_norm_blurred
                            if 'blend_mask_float_blurred' in locals(): del blend_mask_float_blurred
                            gc.collect()
                    else:
                        log_message = log_and_print("Skipping multi-band mask smoothing (ksize not positive odd integer).\n", log_message)
                        # blend_mask_float is already weight1_norm (the precise one)
                    # --- End Smoothing ---

                    # --- Prepare for Blending ---
                    img1_for_blend = gain_applied_warped_img1_u8.astype(np.float32)
                    # Store the state of output_img BEFORE multi-band blending
                    output_img_before_mb_float = output_img.astype(np.float32)
                    img2_for_blend = output_img_before_mb_float # Use the float version

                    # --- Call Multi-Band Blending ---
                    # Note: Ensure multi_band_blending supports 4-channel images.
                    blended_result_uint8 = multi_band_blending(
                        img1_for_blend,
                        img2_for_blend,
                        blend_mask_float, # The prepared mask
                        num_levels=num_blend_levels
                    )

                    # --- Restore Non-Overlap Regions ---
                    log_message = log_and_print("Restoring non-overlap regions after multi-band blending...\n", log_message)

                    # Re-identify strict non-overlap boolean masks (using the ones calculated earlier)
                    strict_non_overlap_mask1 = np.logical_and(mask_warped_binary, np.logical_not(overlap_mask_binary))
                    strict_non_overlap_mask2 = np.logical_and(mask_img2_binary, np.logical_not(overlap_mask_binary))

                    # Convert blended result to float for modification
                    output_img_float = blended_result_uint8.astype(np.float32)

                    # Copy original pixels back into the non-overlap regions
                    # For img1's non-overlap region, use the (potentially gain compensated) warped img1
                    output_img_float[strict_non_overlap_mask1] = img1_for_blend[strict_non_overlap_mask1]

                    # For img2's non-overlap region, use the pixels from *before* blending
                    output_img_float[strict_non_overlap_mask2] = output_img_before_mb_float[strict_non_overlap_mask2]

                    # Convert back to uint8 for the final result for this step
                    output_img = np.clip(output_img_float, 0, 255).astype(np.uint8)
                    log_message = log_and_print("Non-overlap regions restored.\n", log_message)

                    # Apply final exterior mask (keep pure transparency clean)
                    combined_mask_binary = np.logical_or(mask_warped_binary, mask_img2_binary)
                    output_img[~combined_mask_binary] = 0 # Apply the sharp combined mask
                    log_message = log_and_print("Applied final exterior mask.\n", log_message)

                    # Cleanup
                    del img1_for_blend, img2_for_blend, output_img_before_mb_float, blend_mask_float
                    del blended_result_uint8, output_img_float
                    del mask_warped_binary, mask_img2_binary, overlap_mask_binary
                    del strict_non_overlap_mask1, strict_non_overlap_mask2
                    if 'combined_mask_binary' in locals():
                        del combined_mask_binary
                    if 'weight1_norm' in locals():
                        del weight1_norm
                    gc.collect()
                    log_message = log_and_print(f"Multi-band blending with restoration successful.\n", log_message)

                except Exception as e_blend:
                    log_message = log_and_print(f"Error during multi-band blending/restoration: {e_blend}. Falling back to simple overlay.\n{traceback.format_exc()}\n", log_message)
                    # Fallback: Use copyTo with 4-channel support (mask needs to be 1 channel or 4 channels)
                    # mask_warped is single channel uint8, works with 4-channel image in copyTo
                    output_img = cv2.copyTo(gain_applied_warped_img1_u8, mask_warped, output_img)

                    # Ensure cleanup if error happened mid-process
                    if 'img1_for_blend' in locals():
                        del img1_for_blend
                    if 'img2_for_blend' in locals():
                        del img2_for_blend
                    if 'output_img_before_mb_float' in locals():
                        del output_img_before_mb_float
                    if 'blend_mask_float' in locals():
                        del blend_mask_float
                    if 'blended_result_uint8' in locals():
                        del blended_result_uint8
                    if 'mask_warped_binary' in locals():
                        del mask_warped_binary # Clean up boolean masks too
                    if 'mask_img2_binary' in locals():
                        del mask_img2_binary
                    if 'overlap_mask_binary' in locals():
                        del overlap_mask_binary
                    gc.collect()

                    
            # Linear Blending
            elif effective_blend_method == "linear" and has_overlap and gain_applied_warped_img1_u8 is not None:
                log_message = log_and_print("Applying Linear blending...\n", log_message)
                # Ensure overlap_mask is single channel for findContours
                contours, _ = cv2.findContours(overlap_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                if not contours:
                    log_message = log_and_print("Warning: No contours in overlap. Using simple overlay.\n", log_message)
                    output_img = cv2.copyTo(gain_applied_warped_img1_u8, mask_warped, output_img)
                else:
                    main_contour = max(contours, key=cv2.contourArea)
                    x_overlap, y_overlap, w_overlap, h_overlap = cv2.boundingRect(main_contour)
                    # Clip bounding box to canvas dimensions
                    x_overlap = max(0, x_overlap); y_overlap = max(0, y_overlap)
                    w_overlap = min(w_overlap, output_width - x_overlap); h_overlap = min(h_overlap, output_height - y_overlap)

                    if w_overlap <= 0 or h_overlap <= 0:
                        log_message = log_and_print("Warning: Invalid overlap bounding box after clipping. Using simple overlay.\n", log_message)
                        output_img = cv2.copyTo(gain_applied_warped_img1_u8, mask_warped, output_img)
                    else:
                        # Create weight maps (float32)
                        weight1 = np.zeros(output_img.shape[:2], dtype=np.float32)
                        weight2 = np.zeros(output_img.shape[:2], dtype=np.float32)

                        # Generate gradient for the overlap box
                        gradient = None
                        blend_axis = 0 if w_overlap >= h_overlap else 1
                        if blend_axis == 0: # Horizontal blend
                            gradient = np.tile(np.linspace(1.0, 0.0, w_overlap, dtype=np.float32), (h_overlap, 1))
                        else: # Vertical blend
                            gradient = np.tile(np.linspace(1.0, 0.0, h_overlap, dtype=np.float32).reshape(-1, 1), (1, w_overlap))

                        weight1_region = gradient
                        weight2_region = 1.0 - gradient

                        overlap_region_mask = overlap_mask[y_overlap : y_overlap + h_overlap, x_overlap : x_overlap + w_overlap]

                        # Apply weights only where the overlap mask is valid within the bounding box
                        valid_overlap = overlap_region_mask > 0
                        weight1[y_overlap : y_overlap + h_overlap, x_overlap : x_overlap + w_overlap][valid_overlap] = weight1_region[valid_overlap]
                        weight2[y_overlap : y_overlap + h_overlap, x_overlap : x_overlap + w_overlap][valid_overlap] = weight2_region[valid_overlap]
                        del weight1_region, weight2_region, gradient, valid_overlap, overlap_region_mask
                        gc.collect()

                        # Assign weights for non-overlapping regions (ensure masks are single channel)
                        non_overlap_mask1 = cv2.bitwise_and(mask_warped, cv2.bitwise_not(overlap_mask))
                        weight1[non_overlap_mask1 > 0] = 1.0
                        non_overlap_mask2 = cv2.bitwise_and(mask_img2, cv2.bitwise_not(overlap_mask))
                        weight2[non_overlap_mask2 > 0] = 1.0 
                        
                        # Normalize weights before potential smoothing
                        total_weight = weight1 + weight2 + 1e-6 # Add epsilon
                        weight1_norm = weight1 / total_weight
                        weight2_norm = weight2 / total_weight
                        del weight1, weight2, total_weight
                        gc.collect()
                        
                        # Apply Smoothing based on blend_smooth_ksize
                        if blend_smooth_ksize > 0 and blend_smooth_ksize % 2 == 1:
                            log_message = log_and_print(f"Smoothing linear blend weights with GaussianBlur ksize=({blend_smooth_ksize},{blend_smooth_ksize})...\n", log_message)
                            try:
                                # Identify the actual blending area (where both weights contribute meaningfully and overlap exists)
                                overlap_area_mask_bool = (weight1_norm > 1e-6) & (weight2_norm > 1e-6) & (overlap_mask > 0)

                                smoothed_w1 = cv2.GaussianBlur(weight1_norm, (blend_smooth_ksize, blend_smooth_ksize), 0)
                                smoothed_w2 = cv2.GaussianBlur(weight2_norm, (blend_smooth_ksize, blend_smooth_ksize), 0)

                                # Renormalize smoothed weights ONLY in the overlap area
                                total_smoothed_weight = smoothed_w1 + smoothed_w2 + 1e-6
                                # Use temporary arrays to avoid modifying originals during calculation if needed
                                temp_w1 = weight1_norm.copy() # Work on copies
                                temp_w2 = weight2_norm.copy()
                                temp_w1[overlap_area_mask_bool] = (smoothed_w1 / total_smoothed_weight)[overlap_area_mask_bool]
                                temp_w2[overlap_area_mask_bool] = (smoothed_w2 / total_smoothed_weight)[overlap_area_mask_bool]

                                # Restore strict 1.0 / 0.0 weights in non-overlap areas
                                temp_w1[ non_overlap_mask1 > 0 ] = 1.0
                                temp_w1[ non_overlap_mask2 > 0 ] = 0.0
                                temp_w2[ non_overlap_mask1 > 0 ] = 0.0
                                temp_w2[ non_overlap_mask2 > 0 ] = 1.0

                                # Assign back to the working variables
                                weight1_norm = temp_w1
                                weight2_norm = temp_w2

                                del smoothed_w1, smoothed_w2, total_smoothed_weight, overlap_area_mask_bool, temp_w1, temp_w2
                                gc.collect()
                                log_message = log_and_print("Linear weights smoothed and renormalized.\n", log_message)
                            except Exception as e_blur_other:
                                log_message = log_and_print(f"Warning: Error during linear weight smoothing ({e_blur_other}). Using original weights.\n", log_message)
                            finally:
                                # Ensure cleanup of temp vars in this block
                                if 'smoothed_w1' in locals():
                                    del smoothed_w1
                                if 'smoothed_w2' in locals():
                                    del smoothed_w2
                                if 'total_smoothed_weight' in locals():
                                    del total_smoothed_weight
                                if 'overlap_area_mask_bool' in locals():
                                    del overlap_area_mask_bool
                                if 'temp_w1' in locals():
                                    del temp_w1
                                if 'temp_w2' in locals():
                                    del temp_w2
                                gc.collect()
                        else:
                            log_message = log_and_print("Skipping linear weight smoothing (ksize not positive odd integer).\n", log_message)
                        # --- End Smoothing ---
                        
                        # Blend using potentially smoothed and renormalized weights
                        # Identify regions: where img1 only, img2 only, and blend region
                        non_overlap_mask1_bool = (non_overlap_mask1 > 0)
                        non_overlap_mask2_bool = (non_overlap_mask2 > 0)
                        blend_mask_bool = np.logical_not(np.logical_or(non_overlap_mask1_bool, non_overlap_mask2_bool)) & (overlap_mask > 0)
                        
                        # Copy non-overlapping part of image 1 directly where its weight is 1
                        output_img[non_overlap_mask1_bool] = gain_applied_warped_img1_u8[non_overlap_mask1_bool]
                        
                        # Non-overlapping part of image 2 is already in output_img from the initial placement

                        # Blend the overlapping/transition areas
                        blend_indices = np.where(blend_mask_bool)
                        num_blend_pixels = len(blend_indices[0])

                        if num_blend_pixels > 0:
                            log_message = log_and_print(f"Blending {num_blend_pixels} pixels linearly...\n", log_message)
                            try:
                                # Ensure images are float32 for blending calculation
                                img1_blend_float = gain_applied_warped_img1_u8[blend_indices].astype(np.float32)
                                img2_blend_float = output_img[blend_indices].astype(np.float32) # Pixels already placed from img2

                                # Get weights for the blend region and broadcast for element-wise multiplication
                                w1_blend_1d = weight1_norm[blend_indices]
                                w2_blend_1d = weight2_norm[blend_indices]
                                # Add new axis for broadcasting: (N,) -> (N, 1) to multiply with (N, 3) pixel data
                                w1_blend_broadcast = w1_blend_1d[:, np.newaxis]
                                w2_blend_broadcast = w2_blend_1d[:, np.newaxis]

                                # Perform the weighted sum
                                blended_float = w1_blend_broadcast * img1_blend_float + w2_blend_broadcast * img2_blend_float
                                blended_uint8 = blended_float.clip(0, 255).astype(np.uint8)

                                # Place the blended result back into the output image
                                output_img[blend_indices] = blended_uint8

                                del img1_blend_float, img2_blend_float, w1_blend_1d, w2_blend_1d
                                del w1_blend_broadcast, w2_blend_broadcast, blended_float, blended_uint8
                                gc.collect()
                                log_message = log_and_print("Linear blending successful.\n", log_message)

                            except Exception as e_blend_lin:
                                log_message = log_and_print(f"Warning: Error during float blending ({e_blend_lin}). Using simple overlay for blend region.\n", log_message)
                                blend_mask_uint8 = blend_mask_bool.astype(np.uint8) * 255
                                if np.any(blend_mask_uint8):
                                    output_img = cv2.copyTo(gain_applied_warped_img1_u8, blend_mask_uint8, output_img)
                                del blend_mask_uint8
                                gc.collect()
                        else:
                            log_message = log_and_print("Note: Linear blend mask was empty, skipping float blend step.\n", log_message)

                        # Clean up linear blending specific variables
                        del weight1_norm, weight2_norm, blend_mask_bool
                        del non_overlap_mask1, non_overlap_mask2, non_overlap_mask1_bool, non_overlap_mask2_bool
                        if 'blend_indices' in locals():
                            del blend_indices
                        gc.collect()

                # Clean up contour variables regardless of path taken inside linear blend
                if 'contours' in locals():
                    del contours
                if 'main_contour' in locals():
                    del main_contour
                gc.collect()

            # Simple overlay if no blending applied or specified OR if warped image was None
            elif not has_overlap or effective_blend_method not in ["linear", "multi-band"] or gain_applied_warped_img1_u8 is None:
                if gain_applied_warped_img1_u8 is None:
                    log_message = log_and_print("Warped image was None. Performing simple overlay (only showing img2).\n", log_message)
                    # In this case, output_img already contains img2 where it should be, and black elsewhere.
                    # No copyTo needed, as there's nothing to copy from.
                elif not has_overlap:
                    log_message = log_and_print("No overlap. Performing simple overlay.\n", log_message)
                else:
                    log_message = log_and_print(f"Blending method '{effective_blend_method}' or overlap condition not met. Performing simple overlay.\n", log_message)

                if gain_applied_warped_img1_u8 is not None: # Only copy if we have something to copy
                    # No blend or no overlap: Simple Overlay
                    # Decide who covers whom based on Z-order
                    # output_img already has Img2
                    if fixed_layer_type == "img2":
                         # Img2 is base, Img1 covers it
                         output_img = cv2.copyTo(gain_applied_warped_img1_u8, mask_warped, output_img)
                    else:
                         # Img1 is base, Img2 covers it
                         # output_img already has Img2, we just need to fill in where Img1 is not covered by Img2
                         # Or place Img1 first, then Img2
                         output_img = cv2.copyTo(output_img, mask_img2, gain_applied_warped_img1_u8)

            # --- Final Result Assignment ---
            final_output_img = output_img # Assign the final blended/overlaid image

            end_time_pairwise = time.time()
            log_message = log_and_print(f"Pairwise stitching finished. Time: {end_time_pairwise - start_time_pairwise:.2f}s\n", log_message)

        else: # Not enough good matches
            log_message = log_and_print(f"Error: Not enough good matches ({len(good_matches)} < {MIN_MATCH_COUNT}).\n", log_message)
            # Minimal cleanup needed here, mostly handled in finally block
            if 'kp1' in locals():
                del kp1
            if 'kp2' in locals():
                del kp2
            if 'good_matches' in locals():
                del good_matches

    except Exception as e:
        log_message = log_and_print(f"Error during pairwise stitching: {e}\n{traceback.format_exc()}\n", log_message)
        final_output_img = None # Ensure None is returned on error

    finally:
        # --- Comprehensive Cleanup ---
        # Delete variables in roughly reverse order of creation / dependency
        # Blend-specific intermediates
        if 'img1_for_blend' in locals():
            del img1_for_blend
        if 'img2_for_blend' in locals():
            del img2_for_blend
        if 'output_img_before_mb_float' in locals():
            del output_img_before_mb_float
        if 'blend_mask_float' in locals():
            del blend_mask_float
        if 'weight1_norm' in locals():
            del weight1_norm # From mask gen (MB or Linear)
        if 'weight2_norm' in locals():
            del weight2_norm # From Linear mask gen
        # ... other linear/MB intermediate vars ...

        # Gain/Warp intermediates
        if 'gain_applied_warped_img1_u8' in locals() and gain_applied_warped_img1_u8 is not None:
            # Only delete if it's a separate copy from warped_img1_u8
            if 'warped_img1_u8' in locals() and warped_img1_u8 is not None and gain_applied_warped_img1_u8 is not warped_img1_u8:
                del gain_applied_warped_img1_u8
            # else it points to warped_img1_u8 or warped_img1_u8 is None/deleted already

        if 'warped_img1_u8' in locals() and warped_img1_u8 is not None:
            del warped_img1_u8
        if 'mask_warped' in locals():
            del mask_warped
        if 'mask_img2' in locals():
            del mask_img2
        if 'overlap_mask' in locals():
            del overlap_mask
        if 'img2_part' in locals():
            del img2_part # From placing img2

        if 'output_img' in locals() and output_img is not None and output_img is not final_output_img:
            # Delete intermediate output_img if it wasn't the final result (e.g., error occurred)
            del output_img

        # Transformation matrices and points
        if 'H_matrix_3x3_for_canvas' in locals():
            del H_matrix_3x3_for_canvas
        if 'final_warp_M' in locals():
            del final_warp_M
        if 'mask_trans' in locals():
            del mask_trans
        if 'src_pts' in locals():
            del src_pts
        if 'dst_pts' in locals():
            del dst_pts

        # Feature matching intermediates
        if 'kp1' in locals():
            del kp1
        if 'kp2' in locals():
            del kp2
        if 'des1' in locals():
            del des1
        if 'des2' in locals():
            del des2
        if 'good_matches' in locals():
            del good_matches
        if 'all_matches' in locals():
            del all_matches

        # Initial uint8 images
        if 'img1_u8' in locals():
            del img1_u8
        if 'img2_u8' in locals():
            del img2_u8

        gc.collect()

    return final_output_img, log_message

# --- Function for N-Image Stitching (Primarily for Image List Input) ---
def stitch_multiple_images(images, # List of NumPy images (BGR/BGRA, potentially pre-cropped)
                                    use_transparency=True,
                                    stitcher_mode_str="SCANS",
                                    registration_resol=0.6,
                                    seam_estimation_resol=0.1,
                                    compositing_resol=-1.0, # Use -1.0 for default/auto
                                    wave_correction=False,
                                    exposure_comp_type_str="GAIN_BLOCKS",
                                    enable_cropping=True, # This is for POST-stitch cropping
                                    strict_no_black_edges=False,
                                    # Pairwise/Fallback specific params
                                    transform_model_str="Homography",
                                    blend_method="multi-band",
                                    enable_gain_compensation=True,
                                    orb_nfeatures=2000,
                                    match_ratio_thresh=0.75,
                                    ransac_reproj_thresh=5.0,
                                    max_distance_coeff=0.5,
                                    max_blending_width=10000,
                                    max_blending_height=10000,
                                    blend_smooth_ksize=15,
                                    num_blend_levels=4,
                                    fixed_base_image_index=-1,
                                    ):
    """
    Stitches a list of images. Tries cv2.Stitcher first (unless 'DIRECT_PAIRWISE'),
    otherwise falls back to manual pairwise stitching.
    Returns ONE stitched image (RGB/RGBA) and log.
    Input images should be in BGR or BGRA format (already potentially cropped by caller).
    Output is RGBA. The 'enable_cropping' param here refers to final black border cropping.
    If use_transparency is False, the final output will be RGB (opaque background).
    """
    log = log_and_print(f"--- Starting Stitching Process for {len(images)} Provided Images ---\n", "")
    total_start_time = time.time()
    stitched_img_rgba = None # Initialize result

    if len(images) < 2:
        log = log_and_print("Error: Need at least two images to stitch.\n", log)
        return None, log

    # Check if any input image is None or empty after potential pre-cropping
    valid_images = []
    for i, img in enumerate(images):
        if img is None or img.size == 0:
            log = log_and_print(f"Warning: Input image at index {i} is invalid (None or empty). Skipping it.\n", log)
        else:
            valid_images.append(img)

    if len(valid_images) < 2:
        log = log_and_print(f"Error: Not enough valid images ({len(valid_images)}) left after checking. Cannot stitch.\n", log)
        del images, valid_images # Clean up
        gc.collect()
        return None, log

    images = valid_images # Use the filtered list
    log = log_and_print(f"Proceeding with {len(images)} valid images.\n", log)
    log = log_and_print(f"Selected Stitcher Mode: {stitcher_mode_str}\n", log)

    # Log the pairwise transform model choice, relevant if fallback or DIRECT_PAIRWISE
    if stitcher_mode_str == "DIRECT_PAIRWISE":
        log = log_and_print(f"Using Pairwise Transform Model: {transform_model_str}\n", log)
        log = log_and_print(f"Pairwise Params: RANSAC Thresh={ransac_reproj_thresh}, Max Dist Coeff={max_distance_coeff}\n", log)
    else:
        log = log_and_print(f"Pairwise Transform Model (for fallback): {transform_model_str}\n", log)
        log = log_and_print(f"Fallback Pairwise Params: RANSAC Thresh={ransac_reproj_thresh}, Max Dist Coeff={max_distance_coeff}\n", log)
    log = log_and_print(f"Post-Crop: Enable={enable_cropping}, Strict Edges={strict_no_black_edges}\n", log) # Log new param
    
    skip_cv2_stitcher = (stitcher_mode_str == "DIRECT_PAIRWISE")

    stitched_img_bgra = None
    stitcher_success = False

    # 1. Try using cv2.Stitcher (unless skipped)
    if not skip_cv2_stitcher:
        log = log_and_print("\nAttempting stitching with built-in cv2.Stitcher...\n", log)
        # ... [Existing cv2.Stitcher setup code omitted for brevity, logic remains same] ...
        # Note: cv2.Stitcher usually outputs BGR (3 channels), removing alpha. 
        # If transparency is critical, DIRECT_PAIRWISE is preferred.
        
        # Map string parameters to OpenCV constants for cv2.Stitcher modes
        stitcher_mode_map = {"PANORAMA": cv2.Stitcher_PANORAMA, "SCANS": cv2.Stitcher_SCANS}
        # Default to SCANS if invalid string for cv2.Stitcher mode itself
        cv2_stitcher_mode_enum = stitcher_mode_map.get(stitcher_mode_str, cv2.Stitcher_SCANS)
        log = log_and_print(f"Using OpenCV Stitcher Mode Enum: {cv2_stitcher_mode_enum} (from string: {stitcher_mode_str})\n", log)
        
        exposure_comp_map = {
            "NO": cv2.detail.ExposureCompensator_NO,
            "GAIN": cv2.detail.ExposureCompensator_GAIN,
            "GAIN_BLOCKS": cv2.detail.ExposureCompensator_GAIN_BLOCKS
        }
        exposure_comp_type = exposure_comp_map.get(exposure_comp_type_str, cv2.detail.ExposureCompensator_GAIN_BLOCKS)
        log = log_and_print(f"Using Exposure Compensation: {exposure_comp_type_str}\n", log)
        log = log_and_print(f"Wave Correction Enabled: {wave_correction}\n", log)

        stitcher = None # Initialize stitcher object variable
        try:
            stitcher = cv2.Stitcher.create(cv2_stitcher_mode_enum)
            if stitcher is None:
                raise RuntimeError("cv2.Stitcher.create returned None.")

            log = log_and_print(f"Setting Stitcher resolutions: Reg={registration_resol:.2f}, Seam={seam_estimation_resol:.2f}, Comp={compositing_resol:.2f}\n", log)
            try:
                if hasattr(stitcher, 'setRegistrationResol'):
                 stitcher.setRegistrationResol(float(registration_resol))
                if hasattr(stitcher, 'setSeamEstimationResol'):
                 stitcher.setSeamEstimationResol(float(seam_estimation_resol))
                if hasattr(stitcher, 'setCompositingResol'):
                 stitcher.setCompositingResol(float(compositing_resol))
            except Exception as e_res:
                log = log_and_print(f"Warning: Could not set stitcher resolutions: {e_res}\n", log)

            try:
                if hasattr(stitcher, 'setWaveCorrection'):
                    stitcher.setWaveCorrection(wave_correction)
            except Exception as e_wave:
                log = log_and_print(f"Warning: Could not set wave correction: {e_wave}\n", log)
                
            try:
                if hasattr(stitcher, 'setExposureCompensator'):
                    compensator = cv2.detail.ExposureCompensator_createDefault(exposure_comp_type)
                    stitcher.setExposureCompensator(compensator)
                    del compensator # Release compensator object reference
            except Exception as e_exp:
                log = log_and_print(f"Warning: Could not set exposure compensator: {e_exp}\n", log)

            # Note: cv2.Stitcher might strip alpha here.
            # Ensure all images are uint8 before passing to stitcher
            images_uint8 = []
            for img in images:
                if img.dtype != np.uint8:
                    images_uint8.append(img.clip(0, 255).astype(np.uint8))
                else:
                    images_uint8.append(img)

            status = cv2.Stitcher_ERR_NEED_MORE_IMGS # Initialize status to a known failure code
            stitched_img_raw = None
            
            try:
                log = log_and_print("Executing stitcher.stitch()...\n", log)
                status, stitched_img_raw = stitcher.stitch(images_uint8) # Input 'images' should be BGR uint8
                log = log_and_print(f"stitcher.stitch() returned status: {status}\n", log) # Log the status code

            except cv2.error as e_stitch:
                log = log_and_print(f"OpenCV Error occurred DURING stitcher.stitch() call: {e_stitch}\n", log)
                log = log_and_print(f"Traceback:\n{traceback.format_exc()}\n", log)
                log = log_and_print("Falling back to manual pairwise stitching method due to stitch() error.\n", log)
                status = -99 # Set status to a custom failure code to ensure fallback
                stitched_img_raw = None
            except Exception as e_stitch_other:
                log = log_and_print(f"Unexpected Error occurred DURING stitcher.stitch() call: {e_stitch_other}\n", log)
                log = log_and_print(f"Traceback:\n{traceback.format_exc()}\n", log)
                log = log_and_print("Falling back to manual pairwise stitching method due to unexpected stitch() error.\n", log)
                status = -100 # Set status to a custom failure code
                stitched_img_raw = None
            finally:
                del images_uint8
                gc.collect()

            if status == cv2.Stitcher_OK:
                log = log_and_print("cv2.Stitcher successful!\n", log)
                if stitched_img_raw is not None and stitched_img_raw.size > 0:
                    log = log_and_print(f"Stitcher output dimensions (raw): {stitched_img_raw.shape}\n", log)
                    # Apply FINAL black border cropping if enabled
                    cropped_result = crop_black_borders(stitched_img_raw, enable_cropping, strict_no_black_edges)
                    if cropped_result is not None and cropped_result.size > 0 :
                         stitched_img_bgra = cropped_result
                         log = log_and_print(f"Final dimensions after POST-stitch cropping: {stitched_img_bgra.shape}\n", log)
                    else:
                         stitched_img_bgra = stitched_img_raw
                         log = log_and_print("POST-stitch cropping failed or disabled, using raw stitcher output.\n", log)
                    stitcher_success = True
                    del stitched_img_raw
                    if 'cropped_result' in locals() and cropped_result is not stitched_img_bgra:
                        del cropped_result
                    gc.collect()
                else:
                    log = log_and_print("Error: cv2.Stitcher returned status OK but the image is empty.\n", log)
            else:
                error_codes = { getattr(cv2, k): k for k in dir(cv2) if k.startswith('Stitcher_ERR_') }
                error_codes[-99] = "ERR_STITCH_CV_ERROR"
                error_codes[-100] = "ERR_STITCH_EXCEPTION"
                # Check if fallback message was already logged by exceptions during stitch()
                if "Falling back to manual pairwise stitching method due to" not in log.splitlines()[-5:]:
                    log = log_and_print(f"cv2.Stitcher failed with status code: {status} ({error_codes.get(status, f'Unknown Error {status}')})\n", log)
                    log = log_and_print("Falling back to manual pairwise stitching method...\n", log)

        except AttributeError as e_attr:
            log = log_and_print(f"AttributeError during Stitcher setup ({e_attr}). Falling back.\n{traceback.format_exc()}\n", log)
        except RuntimeError as e_runtime:
            log = log_and_print(f"RuntimeError during Stitcher setup ({e_runtime}). Falling back.\n{traceback.format_exc()}\n", log)
        except cv2.error as e:
            log = log_and_print(f"OpenCV Error during Stitcher operation: {e}. Falling back.\n", log)
            if "OutOfMemoryError" in str(e) or "Insufficient memory" in str(e):
                 log = log_and_print(">>> Specific OutOfMemoryError detected. Reduce resolutions or use more RAM.\n", log)
            log = log_and_print(f"{traceback.format_exc()}\n", log)
        except Exception as e:
            log = log_and_print(f"Unexpected error during Stitcher: {e}. Falling back.\n{traceback.format_exc()}\n", log)
        finally:
            if stitcher is not None:
                # Attempt to release stitcher resources if possible (may not exist)
                try:
                    del stitcher
                except NameError:
                    pass
            gc.collect()
            
    # 2. Fallback or Direct Pairwise Stitching
    # Trigger if cv2.Stitcher was skipped OR if it failed
    if skip_cv2_stitcher or not stitcher_success:
        # Add clearer logging based on the reason
        if skip_cv2_stitcher:
            log = log_and_print(f"\n--- Starting Sequential Pairwise Stitching (Direct Mode, Transform: {transform_model_str}) ---\n", log)
        else:
            log = log_and_print(f"\n--- Starting Sequential Pairwise Stitching (Fallback, Transform: {transform_model_str}) ---\n", log)

        if len(images) >= 2:
            # Start with the first valid image. Ensure it's uint8.
            if images[0].dtype != np.uint8:
                current_stitched_image = images[0].clip(0, 255).astype(np.uint8)
            else:
                current_stitched_image = images[0].copy() # Copy to avoid modifying original list item

            sequential_stitch_success = True
            for i in range(1, len(images)):
                log = log_and_print(f"\nSequentially stitching image {i+1} of {len(images)} using pairwise method...\n", log)

                # Ensure next image is uint8
                if images[i].dtype != np.uint8:
                    next_image = images[i].clip(0, 255).astype(np.uint8)
                else:
                    next_image = images[i] # Can use directly if already uint8

                # Determine Fixed Layer Type for this pair
                # fixed_layer_type logic:
                # - "img2": The new image currently being added (index i) is the specified base map.
                # - "img1": The current composite image (index < i) contains the specified base map.
                # - "none": No base map specified, perform normal blending.
                current_fixed_type = "none"
                if fixed_base_image_index != -1:
                    if i == fixed_base_image_index:
                        current_fixed_type = "img2" # The new image being added IS the fixed base
                    elif fixed_base_image_index < i:
                        current_fixed_type = "img1" # The composite (img1) contains the fixed base, so it should stay at bottom
                    elif fixed_base_image_index == 0:
                        current_fixed_type = "img1" # Special case: First image is base, so composite is always base

                result, pairwise_log = stitch_pairwise_images(
                    current_stitched_image,       # BGR uint8
                    next_image,                   # BGR uint8
                    transform_model_str=transform_model_str,
                    blend_method=blend_method,
                    enable_gain_compensation=enable_gain_compensation,
                    orb_nfeatures=orb_nfeatures,
                    match_ratio_thresh=match_ratio_thresh,
                    ransac_reproj_thresh=ransac_reproj_thresh,
                    max_distance_coeff=max_distance_coeff,
                    max_blending_width=max_blending_width,
                    max_blending_height=max_blending_height,
                    blend_smooth_ksize=blend_smooth_ksize,
                    num_blend_levels=num_blend_levels,
                    fixed_layer_type=current_fixed_type
                )
                log += pairwise_log

                if result is None:
                    log = log_and_print(f"Error: Failed to stitch image {i+1} onto previous composite in the pairwise step. Aborting sequential process.\n", log) # Corrected index in log
                    sequential_stitch_success = False
                    if 'current_stitched_image' in locals() and current_stitched_image is not None:
                        del current_stitched_image # Clean up intermediate result
                    gc.collect()
                    break

                # Release the previous intermediate image before assigning the new one
                if 'current_stitched_image' in locals() and current_stitched_image is not None:
                    del current_stitched_image
                    gc.collect()
                current_stitched_image = result # Result is BGR uint8
                log = log_and_print(f"Intermediate stitched shape: {current_stitched_image.shape}\n", log)
                # Ensure next_image is cleaned up if it was a conversion
                if next_image is not images[i]:
                    del next_image
                    gc.collect()

            if sequential_stitch_success and current_stitched_image is not None:
                log = log_and_print("\nSequential pairwise stitching complete. Applying final cropping...\n", log)
                # Apply FINAL black border cropping if enabled
                cropped_fallback = crop_black_borders(current_stitched_image, enable_cropping, strict_no_black_edges)
                if cropped_fallback is not None and cropped_fallback.size > 0:
                    stitched_img_bgra = cropped_fallback
                    log = log_and_print(f"Final dimensions after POST-stitch cropping: {stitched_img_bgra.shape}\n", log)
                else:
                    stitched_img_bgra = current_stitched_image # Use uncropped if cropping failed
                    log = log_and_print("POST-stitch cropping failed or disabled, using uncropped manual result.\n", log)
                # Clean up the last intermediate/uncropped result if cropping was successful and created a new object
                if cropped_fallback is not current_stitched_image and current_stitched_image is not None:
                    del current_stitched_image
                if 'cropped_fallback' in locals() and cropped_fallback is not stitched_img_bgra:
                    del cropped_fallback
                gc.collect()
            else:
                log = log_and_print("Sequential pairwise stitching process could not produce a final result.\n", log)
                # Ensure cleanup if loop broke early or current_stitched_image was None/deleted
                if 'current_stitched_image' in locals() and current_stitched_image is not None:
                    del current_stitched_image
                    gc.collect()
        else: # Handle len(images) < 2 case (shouldn't happen due to initial check, but safety)
                 log = log_and_print("Error: Not enough images for pairwise stitching (internal check).\n", log)

    # Clean up the input image list now that it's processed
    del images
    if 'valid_images' in locals():
        del valid_images # Should be same as images now
    gc.collect()

    # 3. Final Result Check and Return (Handling Alpha Channel)
    total_end_time = time.time()
    log = log_and_print(f"\nTotal processing time: {total_end_time - total_start_time:.2f} seconds.\n", log)

    if stitched_img_bgra is not None and stitched_img_bgra.size > 0:
        log = log_and_print("Stitching process finished for image list.", log)
        try:
            # Handle final output based on transparency flag
            if use_transparency:
                # Preserve/Ensure RGBA
                if stitched_img_bgra.shape[2] == 4:
                # Convert BGRA to RGBA
                    stitched_img_rgba = cv2.cvtColor(stitched_img_bgra, cv2.COLOR_BGRA2RGBA)
                    log = log_and_print("Converted BGRA to RGBA (Transparency preserved).", log)
                else:
                    # Source was BGR, make it RGBA (solid alpha)
                    stitched_img_rgba = cv2.cvtColor(stitched_img_bgra, cv2.COLOR_BGR2RGBA)
                    log = log_and_print("Converted BGR to RGBA.", log)
            else:
                # Force RGB (Drop Alpha / Opaque)
                if stitched_img_bgra.shape[2] == 4:
                    stitched_img_rgba = cv2.cvtColor(stitched_img_bgra, cv2.COLOR_BGRA2RGB)
                    log = log_and_print("Converted BGRA to RGB (Transparency disabled, alpha dropped).", log)
                else:
                    # Convert BGR to RGB
                    stitched_img_rgba = cv2.cvtColor(stitched_img_bgra, cv2.COLOR_BGR2RGB)
                    log = log_and_print("Converted BGR to RGB.", log)
                
            del stitched_img_bgra # Release BGRA version
            gc.collect()
            return stitched_img_rgba, log
        except cv2.error as e_cvt:
            log = log_and_print(f"\nError converting final image: {e_cvt}. Returning None.\n", log)
            if 'stitched_img_bgra' in locals(): del stitched_img_bgra
            gc.collect()
            return None, log
    else:
        log = log_and_print("Error: Stitching failed. No final image generated.", log)
        if 'stitched_img_bgra' in locals() and stitched_img_bgra is not None:
            del stitched_img_bgra
            gc.collect()
        return None, log


# --- Video Frame Stitching ---
def stitch_video_frames(video_path,
                        use_transparency=True,
                        crop_top_percent=0.0,
                        crop_bottom_percent=0.0,
                        enable_cropping=True, # This is for POST-stitch cropping
                        strict_no_black_edges=False,
                        # Pairwise specific params
                        transform_model_str="Homography",
                        blend_method="multi-band",
                        enable_gain_compensation=True,
                        orb_nfeatures=2000,
                        match_ratio_thresh=0.75,
                        ransac_reproj_thresh=5.0,
                        max_distance_coeff=0.5,
                        max_blending_width=10000,
                        max_blending_height=10000,
                        blend_smooth_ksize=15,
                        num_blend_levels=4,
                        # Video specific params
                        sample_interval_ms=3000,
                        max_composite_width=10000,
                        max_composite_height=10000,
                        progress=None,
                        ):
    """
    Reads a video, samples frames, and stitches them sequentially.
    Returns a list of stitched images (RGBA if transparency=True, else RGB) and a log.
    """
    log = log_and_print(f"--- Starting Incremental Video Stitching: {os.path.basename(video_path)} ---\n", "")
    log = log_and_print(f"Params: Interval={sample_interval_ms}ms, Transform={transform_model_str}, ORB={orb_nfeatures}, Ratio={match_ratio_thresh}\n", log)
    log = log_and_print(f"Params Cont'd: RANSAC Thresh={ransac_reproj_thresh}, Max Dist Coeff={max_distance_coeff}\n", log)
    log = log_and_print(f"Composite Limits: MaxW={max_composite_width}, MaxH={max_composite_height}\n", log)
    log = log_and_print(f"Pre-Crop: Top={crop_top_percent}%, Bottom={crop_bottom_percent}%\n", log)
    log = log_and_print(f"Post-Crop Black Borders: {enable_cropping}, Strict Edges: {strict_no_black_edges}\n", log)
    log = log_and_print(f"Blending: Method={blend_method}, GainComp={enable_gain_compensation}, SmoothKSize={blend_smooth_ksize}, MB Levels={num_blend_levels}\n", log)
    total_start_time = time.time()
    stitched_results_rgba = [] # Store final images (RGBA or RGB)

    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        log = log_and_print(f"Error: Could not open video file: {video_path}\n", log)
        return [], log

    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count_total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    if fps <= 0 or np.isnan(fps): # Handle invalid FPS reads
        fps = 30 # Default FPS
        log = log_and_print("Warning: Could not read valid FPS, defaulting to 30.\n", log)
    if frame_count_total <= 0: # Handle invalid frame count reads
        log = log_and_print("Warning: Could not read valid total frame count.\n", log)
        total_sampled_estimate = 0 # Cannot estimate progress accurately
    else:
        # Estimate total frames to be sampled, avoid division by zero if interval is 0
        frames_per_sample = max(1, int(round(fps * (sample_interval_ms / 1000.0)))) if sample_interval_ms > 0 else frame_count_total
        total_sampled_estimate = frame_count_total / frames_per_sample if frames_per_sample > 0 else 0


    frame_interval = max(1, int(round(fps * (sample_interval_ms / 1000.0))))
    log = log_and_print(f"Video Info: ~{fps:.2f} FPS, {frame_count_total} Frames, Sampling every {frame_interval} frames.\n", log)
    
    frame_num = 0
    processed_sampled_count = 0 # Counter for progress bar
    anchor_frame = None         # The starting frame of the current sequence (BGR, cropped)
    current_composite = None    # The stitched result being built (BGR, uint8)
    last_saved_composite = None # Keep track of the last saved image to avoid duplicates

    # Helper to save image to results list with correct color conversion
    def append_result(img_bgr_or_bgra):
        try:
            if use_transparency:
                if img_bgr_or_bgra.shape[2] == 4:
                    stitched_results_rgba.append(cv2.cvtColor(img_bgr_or_bgra, cv2.COLOR_BGRA2RGBA))
                else:
                    stitched_results_rgba.append(cv2.cvtColor(img_bgr_or_bgra, cv2.COLOR_BGR2RGBA))
            else:
                # Force RGB Output
                if img_bgr_or_bgra.shape[2] == 4:
                     stitched_results_rgba.append(cv2.cvtColor(img_bgr_or_bgra, cv2.COLOR_BGRA2RGB))
                else:
                     stitched_results_rgba.append(cv2.cvtColor(img_bgr_or_bgra, cv2.COLOR_BGR2RGB))
            return True
        except Exception as e:
            print(f"Error converting result: {e}")
            return False

    while True:
        frame_bgr_raw = None # Initialize here for cleanup later
        try:
            if cap is None or not cap.isOpened():
                log = log_and_print("Error: Video capture became invalid during processing.\n", log)
                break
            ret, frame_bgr_raw = cap.read()
            if not ret:
                    log = log_and_print("\nEnd of video stream reached.\n", log)
                    break # End of video

                # --- Sampling Logic ---
            if frame_num % frame_interval == 0:
                if frame_bgr_raw is not None and frame_bgr_raw.size > 0:
                    processed_sampled_count += 1
                    frame_bgra = None # Initialize BGR frame variable

                    # Handle Transparency Input
                    if not use_transparency:
                        # If transparency is disabled, ensure we treat the input as Opaque BGRA
                        # We must use BGRA for the internal stitcher to work (warping masks), 
                        # but we ensure the Alpha channel is full (255).
                        if frame_bgr_raw.ndim == 3 and frame_bgr_raw.shape[2] == 3:
                            frame_bgra = cv2.cvtColor(frame_bgr_raw, cv2.COLOR_BGR2BGRA)
                        elif frame_bgr_raw.ndim == 3 and frame_bgr_raw.shape[2] == 4:
                             # Drop existing alpha and replace with opaque
                             temp_bgr = cv2.cvtColor(frame_bgr_raw, cv2.COLOR_BGRA2BGR)
                             frame_bgra = cv2.cvtColor(temp_bgr, cv2.COLOR_BGR2BGRA)
                             del temp_bgr
                        else:
                             # Grayscale
                             frame_bgra = cv2.cvtColor(frame_bgr_raw, cv2.COLOR_GRAY2BGRA)
                    else:
                        # Standard Transparency Handling
                        if frame_bgr_raw.ndim == 2:
                            frame_bgra = cv2.cvtColor(frame_bgr_raw, cv2.COLOR_GRAY2BGRA)
                        elif frame_bgr_raw.ndim == 3 and frame_bgr_raw.shape[2] == 3:
                            # Add alpha channel (opaque)
                            frame_bgra = cv2.cvtColor(frame_bgr_raw, cv2.COLOR_BGR2BGRA)
                        elif frame_bgr_raw.ndim == 3 and frame_bgr_raw.shape[2] == 4:
                            frame_bgra = frame_bgr_raw
                        else:
                            log = log_and_print(f"Warning: Skipping frame {frame_num} due to unexpected shape {frame_bgr_raw.shape}\n", log)
                            if frame_bgr_raw is not None:
                                del frame_bgr_raw # Clean up original frame
                            gc.collect()
                            frame_num += 1
                            continue # Skip to next frame read
                    
                    # Release the raw frame once converted/checked (if a copy was made)
                    if frame_bgra is not frame_bgr_raw and frame_bgr_raw is not None:
                        del frame_bgr_raw
                        frame_bgr_raw = None # Mark as deleted
                        gc.collect()

                    cropped_frame_bgra = crop_image_by_percent(frame_bgra, crop_top_percent, crop_bottom_percent)
                    del frame_bgra # Release the uncropped BGR version
                    gc.collect()

                    # Check if cropping failed or resulted in an empty image
                    if cropped_frame_bgra is None or cropped_frame_bgra.size == 0:
                        log = log_and_print(f"Warning: Skipping frame {frame_num} because percentage cropping failed or resulted in empty image.\n", log)
                        if cropped_frame_bgra is not None: del cropped_frame_bgra # Should be None, but safety check
                        gc.collect()
                        frame_num += 1
                        continue # Skip to next frame read
                    
                    # Now use 'cropped_frame_bgra' as the current frame for stitching
                    current_frame_for_stitch = cropped_frame_bgra # BGRA, uint8, potentially cropped
                    
                    if progress is not None and total_sampled_estimate > 0:
                        # Ensure progress doesn't exceed 1.0
                        progress_fraction = min(1.0, processed_sampled_count / total_sampled_estimate)
                        progress(progress_fraction, desc=f"Processing Sample {processed_sampled_count}/{int(total_sampled_estimate)}")
                    elif progress is not None:
                        # Fallback progress if estimate is bad
                         progress(processed_sampled_count / (processed_sampled_count + 10), desc=f"Processing Sample {processed_sampled_count}")
                         

                    log = log_and_print(f"\n--- Processing sampled frame index {frame_num} (Count: {processed_sampled_count}) ---\n", log)
                    log = log_and_print(f"Frame shape after potential pre-crop: {current_frame_for_stitch.shape}\n", log)

                    # --- Stitching Logic ---
                    if anchor_frame is None:
                        # Start a new sequence
                        anchor_frame = current_frame_for_stitch.copy() # Make a copy
                        current_composite = anchor_frame # Start composite is the anchor itself
                        log = log_and_print(f"Frame {frame_num}: Set as new anchor (Shape: {anchor_frame.shape}).\n", log)
                        # No need to stitch yet, just set the anchor

                    else:
                        # Try stitching the current composite with the new frame
                        log = log_and_print(f"Attempting stitch: Composite({current_composite.shape}) + Frame({current_frame_for_stitch.shape})\n", log)

                        stitch_result, stitch_log = stitch_pairwise_images(
                            current_composite,          # Previous result or anchor (uint8)
                            current_frame_for_stitch,   # New frame to add (uint8)
                            transform_model_str=transform_model_str,
                            blend_method=blend_method,
                            enable_gain_compensation=enable_gain_compensation,
                            orb_nfeatures=orb_nfeatures,
                            match_ratio_thresh=match_ratio_thresh,
                            ransac_reproj_thresh=ransac_reproj_thresh,
                            max_distance_coeff=max_distance_coeff,
                            max_blending_width=max_blending_width,
                            max_blending_height=max_blending_height,
                            blend_smooth_ksize=blend_smooth_ksize,
                            num_blend_levels=num_blend_levels
                        )
                        log += stitch_log

                        if stitch_result is not None and stitch_result.size > 0:
                            # --- Stitching SUCCEEDED ---
                            log = log_and_print(f"Success: Stitched frame {frame_num}. New composite shape: {stitch_result.shape}\n", log)
                            # Release old composite before assigning new one
                            del current_composite
                            gc.collect()
                            current_composite = stitch_result # Update the composite (stitch_result is BGR uint8)
                            # anchor_frame remains the same for this sequence

                            # Check Size Limits
                            h_curr, w_curr = current_composite.shape[:2]
                            size_limit_exceeded = False
                            # Check only if limit > 0
                            if max_composite_width > 0 and w_curr > max_composite_width:
                                log = log_and_print(f"ACTION: Composite width ({w_curr}) exceeded limit ({max_composite_width}).\n", log)
                                size_limit_exceeded = True
                            if max_composite_height > 0 and h_curr > max_composite_height:
                                log = log_and_print(f"ACTION: Composite height ({h_curr}) exceeded limit ({max_composite_height}).\n", log)
                                size_limit_exceeded = True
                                
                            if size_limit_exceeded:
                                log = log_and_print("Saving current composite and starting new sequence with NEXT frame.\n", log)

                                # Apply FINAL black border cropping if enabled
                                post_cropped_composite = crop_black_borders(current_composite, enable_cropping, strict_no_black_edges)
                                if post_cropped_composite is not None and post_cropped_composite.size > 0:
                                    # Avoid saving the exact same image twice in a row
                                    is_duplicate = False
                                    if last_saved_composite is not None:
                                        try:
                                            # Simple check: compare shapes first, then content if shapes match
                                            if last_saved_composite.shape == post_cropped_composite.shape:
                                                if np.array_equal(last_saved_composite, post_cropped_composite):
                                                    is_duplicate = True
                                        except Exception as e_comp:
                                             log = log_and_print(f"Warning: Error comparing images for duplication check: {e_comp}\n", log)
                                             
                                    if not is_duplicate:
                                        # Use helper to append RGBA correctly
                                        append_result(post_cropped_composite)
                                        # Update last_saved_composite only if append is successful
                                        if last_saved_composite is not None: del last_saved_composite
                                        last_saved_composite = post_cropped_composite.copy() # Store the saved one (BGR/BGRA)
                                        log = log_and_print(f"Saved composite image {len(stitched_results_rgba)} (Post-Cropped Shape: {post_cropped_composite.shape}).\n", log)
                                    else:
                                        log = log_and_print("Skipping save: Result identical to previously saved image.\n", log)
                                        
                                    # Clean up the post-cropped version if it wasn't stored in last_saved_composite
                                    if last_saved_composite is not post_cropped_composite:
                                        del post_cropped_composite
                                        gc.collect()
                                else:
                                    log = log_and_print("Warning: Post-stitch cropping failed for the size-limited composite, skipping save.\n", log)
                                    if post_cropped_composite is not None:
                                        del post_cropped_composite # Delete if it existed but was empty

                                # Reset for the next frame to become the anchor
                                del current_composite
                                if anchor_frame is not None:
                                    del anchor_frame # Delete old anchor too
                                if last_saved_composite is not None:
                                    del last_saved_composite # Reset duplicate check too
                                current_composite = None
                                anchor_frame = None
                                last_saved_composite = None
                                gc.collect()
                            # --- End Size Check ---

                        else:
                            # --- Stitching FAILED ---
                            log = log_and_print(f"Failed: Could not stitch frame {frame_num} onto current composite.\n", log)
                            # Save the *previous* valid composite (if it exists and is not just the anchor)
                            save_previous = False
                            if current_composite is not None and anchor_frame is not None:
                                # Check if composite is actually different from the anchor
                                try:
                                    if current_composite.shape != anchor_frame.shape or not np.array_equal(current_composite, anchor_frame):
                                        save_previous = True
                                except Exception as e_comp:
                                    log = log_and_print(f"Warning: Error comparing composite to anchor: {e_comp}\n", log)
                                    save_previous = True # Assume different if compare fails

                            if save_previous:
                                log = log_and_print("ACTION: Saving the previously stitched result before resetting.\n", log)
                                # Apply FINAL black border cropping if enabled
                                post_cropped_composite = crop_black_borders(current_composite, enable_cropping, strict_no_black_edges)
                                if post_cropped_composite is not None and post_cropped_composite.size > 0:
                                    # Check duplicate
                                    is_duplicate = False
                                    if last_saved_composite is not None and last_saved_composite.shape == post_cropped_composite.shape:
                                        if np.array_equal(last_saved_composite, post_cropped_composite):
                                            is_duplicate = True
                                
                                    if not is_duplicate:
                                        # Use helper to append RGBA correctly
                                        append_result(post_cropped_composite)
                                        if last_saved_composite is not None:
                                            del last_saved_composite
                                        last_saved_composite = post_cropped_composite.copy() # Store BGR/BGRA
                                        log = log_and_print(f"Saved composite image {len(stitched_results_rgba)} (Post-Cropped Shape: {post_cropped_composite.shape}).\n", log)
                                    else:
                                        log = log_and_print("Skipping save: Result identical to previously saved image.\n", log)
                                        
                                    if last_saved_composite is not post_cropped_composite:
                                        del post_cropped_composite
                                        gc.collect()
                                else:
                                    log = log_and_print("Warning: Post-stitch cropping failed for the previously stitched result, skipping save.\n", log)
                                    if post_cropped_composite is not None:
                                        del post_cropped_composite
                            else:
                                log = log_and_print("No previous composite to save (stitching failed on first attempt for this anchor or composite was just the anchor).\n", log)
                                
                            # The frame that *failed* to stitch becomes the new anchor
                            log = log_and_print(f"ACTION: Setting frame {frame_num} (shape: {current_frame_for_stitch.shape}) as the new anchor.\n", log)
                            if current_composite is not None:
                                del current_composite # Delete the old composite
                            if anchor_frame is not None:
                                del anchor_frame           # Delete the old anchor
                            if last_saved_composite is not None:
                                del last_saved_composite # Reset duplicate check
                            gc.collect()
                            # Reset anchor to current frame
                            anchor_frame = current_frame_for_stitch.copy() # Use the frame that failed (already cropped)
                            current_composite = anchor_frame # Reset composite to this new anchor
                            last_saved_composite = None
                            gc.collect()
                            # current_frame_for_stitch is now anchor_frame, no need to delete separately below

                    # Clean up current frame AFTER processing (if it wasn't made the new anchor)
                    # If stitching succeeded OR if it failed but wasn't the first frame,
                    # current_frame_for_stitch needs cleanup unless it just became the anchor.
                    if 'current_frame_for_stitch' in locals() and current_frame_for_stitch is not anchor_frame:
                        del current_frame_for_stitch
                        gc.collect()

                else: # Handle cases where frame_bgr_raw is None or empty after read
                    if frame_bgr_raw is not None:
                        del frame_bgr_raw
                        frame_bgr_raw = None
                    gc.collect()
            else: # Frame not sampled
                 # Still need to release the raw frame if it was read
                 if frame_bgr_raw is not None:
                     del frame_bgr_raw
                     frame_bgr_raw = None
                     # Don't gc.collect() on every skipped frame, too slow

            frame_num += 1
            # Loop continues
        except Exception as loop_error:
                log = log_and_print(f"Unexpected error in main video loop at frame {frame_num}: {loop_error}\n{traceback.format_exc()}\n", log)
                # Try to continue to next frame if possible, or break if capture seems broken
                if cap is None or not cap.isOpened():
                    log = log_and_print("Video capture likely broken, stopping loop.\n", log)
                    break
                else:
                    frame_num += 1 # Ensure frame counter increments
                    # Clean up potentially lingering frame data from the failed iteration
                    if 'frame_bgr_raw' in locals() and frame_bgr_raw is not None:
                        del frame_bgr_raw
                    if 'frame_bgra' in locals() and frame_bgra is not None:
                        del frame_bgra
                    if 'cropped_frame_bgra' in locals() and cropped_frame_bgra is not None:
                        del cropped_frame_bgra
                    if 'current_frame_for_stitch' in locals() and current_frame_for_stitch is not None and current_frame_for_stitch is not anchor_frame:
                        del current_frame_for_stitch
                    gc.collect()
                    
    # After the loop: Check if there's a final composite to save
    if current_composite is not None and anchor_frame is not None:
        # Only save if it contains more than just the last anchor frame OR if it's the *only* result
        save_final = False
        if len(stitched_results_rgba) == 0: # If no images saved yet, save this one
            save_final = True
        else:
            try:
                if current_composite.shape != anchor_frame.shape or not np.array_equal(current_composite, anchor_frame):
                    save_final = True
            except Exception as e_comp:
                log = log_and_print(f"Warning: Error comparing final composite to anchor: {e_comp}\n", log)
                save_final = True # Save if comparison fails
        
        if save_final:
            log = log_and_print("\nEnd of frames reached. Checking final composite...\n", log)
            post_cropped_final = crop_black_borders(current_composite, enable_cropping, strict_no_black_edges)
            if post_cropped_final is not None:
                 is_duplicate = False
                 if last_saved_composite is not None and last_saved_composite.shape == post_cropped_final.shape:
                     if np.array_equal(last_saved_composite, post_cropped_final):
                         is_duplicate = True
                 if not is_duplicate:
                     append_result(post_cropped_final) # RGBA append
                     message = f"Saved final composite image {len(stitched_results_rgba)}"
                     if 'post_cropped_composite' in locals():
                        message += f" (Post-Cropped Shape: {post_cropped_composite.shape})"
                         
                     log = log_and_print(f"{message}.\n", log)
                     # No need to update last_saved_composite here, loop is finished
                 else:
                     log = log_and_print("Skipping save of final composite: Result identical to previously saved image.\n", log)
                 
                 # Clean up final cropped image if it existed
                 del post_cropped_final
                 gc.collect()
            else:
                log = log_and_print("Warning: Post-stitch cropping failed for the final composite, skipping save.\n", log)
                if post_cropped_final is not None:
                    del post_cropped_final # Delete if empty
        else:
            log = log_and_print("\nEnd of frames reached. Final composite was identical to its anchor frame and not the only result, not saving.\n", log)

    # --- Final Cleanup ---
    if cap is not None and cap.isOpened():
        cap.release()
    if 'cap' in locals():
        del cap
    if 'anchor_frame' in locals() and anchor_frame is not None:
        del anchor_frame
    if 'current_composite' in locals() and current_composite is not None:
        del current_composite
    if 'last_saved_composite' in locals() and last_saved_composite is not None:
        del last_saved_composite
    gc.collect()

    total_end_time = time.time()
    log = log_and_print(f"\nVideo stitching process finished. Found {len(stitched_results_rgba)} stitched image(s).", log)
    log = log_and_print(f"\nTotal processing time: {total_end_time - total_start_time:.2f} seconds.\n", log)

    # Filter out potential None entries just before returning
    final_results = [img for img in stitched_results_rgba if img is not None and img.size > 0]
    if len(final_results) != len(stitched_results_rgba):
        log = log_and_print(f"Warning: Filtered out {len(stitched_results_rgba) - len(final_results)} None or empty results before final return.\n", log)
        # Clean up the original list with potential Nones
        del stitched_results_rgba
        gc.collect()

    return final_results, log


# --- Gradio Interface Function ---
def run_stitching_interface(input_files,
    use_transparency,
    crop_top_percent,
    crop_bottom_percent,
    stitcher_mode_str, # For cv2.Stitcher
    registration_resol,
    seam_estimation_resol,
    compositing_resol,
    wave_correction,
    exposure_comp_type_str, # For cv2.Stitcher
    enable_cropping, # Post-stitch black border crop
    strict_no_black_edges_input,
    fixed_base_image_index_input,
    # Detailed Stitcher Settings
    transform_model_str,
    blend_method_str,
    enable_gain_compensation,
    orb_nfeatures,
    match_ratio_thresh,
    ransac_reproj_thresh_input,
    max_distance_coeff_input,
    max_blending_width,
    max_blending_height,
    blend_smooth_ksize_input,
    num_blend_levels_input,
    # Video specific settings
    sample_interval_ms,
    max_composite_width_video,
    max_composite_height_video,
    progress=gr.Progress(track_tqdm=True)
    ):
    """
    Wrapper function called by the Gradio interface.
    Handles input (images or video), applies pre-cropping,
    calls the appropriate stitching logic (passing transform_model_str),
    and returns results.
    Updates image reading and result saving to handle RGBA/BGRA transparency.
    UPDATED to handle transparency correctly when saving to temp files.
    """
    if input_files is None or len(input_files) == 0:
        return [], "Please upload images or a video file."
    
    # Convert Gradio inputs to correct types
    fixed_base_image_index = int(fixed_base_image_index_input) if fixed_base_image_index_input is not None else -1
    ransac_reproj_thresh = float(ransac_reproj_thresh_input) if ransac_reproj_thresh_input is not None else 3.0
    max_distance_coeff = float(max_distance_coeff_input) if max_distance_coeff_input is not None else 0.5
    blend_smooth_ksize = int(blend_smooth_ksize_input) if blend_smooth_ksize_input is not None else -1
    num_blend_levels = int(num_blend_levels_input) if num_blend_levels_input is not None else 4

    log = f"Received {len(input_files)} file(s).\n"
    log = log_and_print(f"Pre-Crop Settings: Top={crop_top_percent}%, Bottom={crop_bottom_percent}%\n", log)
    log = log_and_print(f"Post-Crop Black Borders: Enabled={enable_cropping}, Strict Edges={strict_no_black_edges_input}\n", log)
    # Log detailed settings including new ones
    log = log_and_print(f"Detailed Settings: Transform={transform_model_str}, Blend={blend_method_str}, GainComp={enable_gain_compensation}, ORB={orb_nfeatures}, Ratio={match_ratio_thresh}\n", log)
    log = log_and_print(f"Detailed Settings Cont'd: RANSAC Thresh={ransac_reproj_thresh}, MaxDistCoeff={max_distance_coeff}, MaxBlendW={max_blending_width}, MaxBlendH={max_blending_height}, SmoothKSize={blend_smooth_ksize}, MBLevels={num_blend_levels}\n", log)
    progress(0, desc="Processing Input...")

    # Determine input type: List of images or a single video
    is_video_input = False
    video_path = None
    image_paths = []
    
    # Check file types using mimetypes
    try:
        # Handle potential TempfileWrappers or string paths
        input_filepaths = []
        for f in input_files:
            if hasattr(f, 'name'): # Gradio File object
                input_filepaths.append(f.name)
            elif isinstance(f, str): # String path (e.g., from examples)
                input_filepaths.append(f)
            else:
                 log = log_and_print(f"Warning: Unexpected input file type: {type(f)}. Skipping.\n", log)

        if len(input_filepaths) == 1:
            filepath = input_filepaths[0]
            mime_type, _ = mimetypes.guess_type(filepath)
            if mime_type and mime_type.startswith('video'):
                is_video_input = True
                video_path = filepath
                log = log_and_print(f"Detected video input: {os.path.basename(video_path)}\n", log)
            elif mime_type and mime_type.startswith('image'):
                log = log_and_print("Detected single image input. Need at least two images for list stitching.\n", log)
                image_paths = [filepath] # Keep it for error message later
            else:
                # Fallback check: try reading as image
                img_test = None
                try:
                    # Use np.fromfile for paths that might have unicode characters
                    n = np.fromfile(filepath, np.uint8)
                    if n.size > 0:
                        img_test = cv2.imdecode(n, cv2.IMREAD_COLOR)
                    else:
                        raise ValueError("File is empty")

                    if img_test is not None and img_test.size > 0:
                        log = log_and_print(f"Warning: Unknown file type for single file: {os.path.basename(filepath)}. Assuming image based on successful read. Need >= 2 images.\n", log)
                        image_paths = [filepath]
                        del img_test
                    else:
                        raise ValueError("Cannot read as image or image is empty")
                except Exception as e_read_check:
                    log = log_and_print(f"Error: Could not determine file type or read single file: {os.path.basename(filepath)}. Error: {e_read_check}. Please provide video or image files.\n", log)
                    if img_test is not None:
                        del img_test
                    return [], log
        else: # Multiple files uploaded
            image_paths = []
            non_image_skipped = False
            for filepath in input_filepaths:
                mime_type, _ = mimetypes.guess_type(filepath)
                is_image = False
                if mime_type and mime_type.startswith('image'):
                    is_image = True
                else:
                    # Fallback check: Try reading as image
                    img_test = None
                    try:
                        n = np.fromfile(filepath, np.uint8)
                        if n.size > 0:
                            img_test = cv2.imdecode(n, cv2.IMREAD_COLOR)
                        else:
                            raise ValueError("File is empty")

                        if img_test is not None and img_test.size > 0:
                            is_image = True
                            log = log_and_print(f"Warning: Non-image or unknown file type detected: {os.path.basename(filepath)}. Assuming image based on read success.\n", log)
                            del img_test
                        else:
                            non_image_skipped = True
                            log = log_and_print(f"Warning: Skipping non-image file (or empty/failed read): {os.path.basename(filepath)}\n", log)
                    except Exception as e_read_check:
                        non_image_skipped = True
                        log = log_and_print(f"Warning: Skipping non-image file (read failed: {e_read_check}): {os.path.basename(filepath)}\n", log)
                        if img_test is not None:
                            del img_test


                if is_image:
                    image_paths.append(filepath)

            if not image_paths: # No valid images found
                if non_image_skipped:
                    log = log_and_print("Error: No valid image files found in the input list after filtering.\n", log)
                else: # Should only happen if initial list was empty, but covered by check at start
                    log = log_and_print("Error: No image files provided in the input list.\n", log)
                return [], log
            elif non_image_skipped:
                log = log_and_print(f"Proceeding with {len(image_paths)} assumed image files (some non-images were skipped).\n", log)
            else:
                log = log_and_print(f"Detected {len(image_paths)} image inputs.\n", log)
    except Exception as e:
         log = log_and_print(f"Error detecting input file types: {e}\n{traceback.format_exc()}\n", log)
         return [], log
     

    # --- Process Based on Input Type ---
    final_stitched_images_rgba = [] # This will technically hold RGBA if available
    stitch_log = ""

    if is_video_input:
        # --- VIDEO PROCESSING ---
        log = log_and_print("Starting incremental video frame stitching...\n", log)
        progress(0.1, desc="Sampling & Stitching Video...")
        # Ensure blend method string is lowercase for internal checks
        blend_method_lower = blend_method_str.lower() if blend_method_str else "multi-band"

        final_stitched_images_rgba, stitch_log = stitch_video_frames(
            video_path,
            use_transparency=use_transparency,
            crop_top_percent=crop_top_percent,
            crop_bottom_percent=crop_bottom_percent,
            enable_cropping=enable_cropping, # Post-stitch crop
            strict_no_black_edges=strict_no_black_edges_input,
            transform_model_str=transform_model_str,
            blend_method=blend_method_lower, # linear or multi-band
            enable_gain_compensation=enable_gain_compensation,
            orb_nfeatures=orb_nfeatures,
            match_ratio_thresh=match_ratio_thresh,
            ransac_reproj_thresh=ransac_reproj_thresh,
            max_distance_coeff=max_distance_coeff,
            max_blending_width=max_blending_width,
            max_blending_height=max_blending_height,
            sample_interval_ms=sample_interval_ms,
            max_composite_width=max_composite_width_video,
            max_composite_height=max_composite_height_video,
            blend_smooth_ksize=blend_smooth_ksize,
            num_blend_levels=num_blend_levels,
            progress=progress
        )

    elif len(image_paths) >= 2:
        # --- IMAGE LIST PROCESSING ---
        log = log_and_print("Reading and preparing images for list stitching...\n", log)
        images_bgr_cropped = [] # Store potentially cropped BGRA images
        read_success = True
        for i, img_path in enumerate(image_paths):
            progress(i / len(image_paths) * 0.1, desc=f"Reading image {i+1}/{len(image_paths)}") # Small progress for reading
            img = None
            try:
                n = np.fromfile(img_path, np.uint8)
                if n.size > 0:
                    # Load logic based on transparency flag
                    if use_transparency:
                        # Use IMREAD_UNCHANGED to keep Alpha
                        img = cv2.imdecode(n, cv2.IMREAD_UNCHANGED)
                    else:
                        img = cv2.imdecode(n, cv2.IMREAD_COLOR) # Ignore alpha
                else:
                    log = log_and_print(f"Error: File is empty: {os.path.basename(img_path)}. Skipping.\n", log)
                    continue

                if img is None:
                         raise ValueError("imdecode returned None")
            except Exception as e_read:
                log = log_and_print(f"Error reading image: {os.path.basename(img_path)}. Error: {e_read}. Skipping.\n", log)
                if img is not None:
                    del img
                continue # Skip to the next image

            # Convert to BGRA for internal processing consistency
            # (Internal stitching needs masks, so we use BGRA format even if opaque)
            img_bgra = None
            try:
                if use_transparency:
                    if img.ndim == 2:
                        img_bgra = cv2.cvtColor(img, cv2.COLOR_GRAY2BGRA)
                    elif img.ndim == 3 and img.shape[2] == 3:
                        img_bgra = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
                    elif img.ndim == 3 and img.shape[2] == 4:
                        img_bgra = img # Already BGRA
                    else:
                        log = log_and_print(f"Error: Invalid image shape {img.shape} for {os.path.basename(img_path)}. Skipping.\n", log)
                        del img
                        if 'img_bgra' in locals() and img_bgra is not None:
                            del img_bgra
                        gc.collect()
                        continue # Skip to the next image
                else:
                    # Force Opaque BGRA
                    if img.ndim == 2:
                        img_bgra = cv2.cvtColor(img, cv2.COLOR_GRAY2BGRA)
                    elif img.ndim == 3 and img.shape[2] == 3:
                        img_bgra = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
                    elif img.ndim == 3 and img.shape[2] == 4: 
                         # Drop alpha, re-add opaque
                         tmp = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
                         img_bgra = cv2.cvtColor(tmp, cv2.COLOR_BGR2BGRA)
                         del tmp

            except cv2.error as e_cvt_color:
                log = log_and_print(f"Error converting image color for {os.path.basename(img_path)}: {e_cvt_color}. Skipping.\n", log)
                del img
                if 'img_bgra' in locals() and img_bgra is not None:
                    del img_bgra
                gc.collect()
                continue

            # Release original read image if conversion happened
            if img_bgra is not img:
                del img
                gc.collect()

            # Apply Percentage Cropping
            img_bgra_cropped_single = crop_image_by_percent(img_bgra, crop_top_percent, crop_bottom_percent)

            # Release uncropped BGRA version
            if img_bgra_cropped_single is not img_bgra:
                del img_bgra
                gc.collect()

            if img_bgra_cropped_single is None or img_bgra_cropped_single.size == 0:
                log = log_and_print(f"Warning: Skipping image {os.path.basename(img_path)} because percentage cropping failed or resulted in empty image.\n", log)
                if img_bgra_cropped_single is not None:
                    del img_bgra_cropped_single
                gc.collect()
                continue # Skip to next image

            images_bgr_cropped.append(img_bgra_cropped_single)
            # log = log_and_print(f"Read and pre-cropped: {os.path.basename(img_path)} -> Shape: {img_bgra_cropped_single.shape}\n", log) # Can be verbose

        if len(images_bgr_cropped) < 2:
            stitch_log = log_and_print(f"Need at least two valid images after reading and pre-cropping ({len(images_bgr_cropped)} found) for list stitching.\n", log) 
            read_success = False # Indicate failure to proceed
        else:
            log = log_and_print(f"Proceeding with {len(images_bgr_cropped)} valid, pre-cropped images. Starting list stitching...\n", log)
            progress(0.1, desc="Stitching Image List...")
            # Ensure blend method string is lowercase for internal checks
            blend_method_lower = blend_method_str.lower() if blend_method_str else "multi-band"

            # Call the modified stitch_multiple_images function
        stitched_single_rgba, stitch_log_img = stitch_multiple_images(
            images_bgr_cropped, # Pass the list of cropped images (BGRA/BGR)
            use_transparency=use_transparency,
            stitcher_mode_str=stitcher_mode_str,
            registration_resol=registration_resol,
            seam_estimation_resol=seam_estimation_resol,
            compositing_resol=compositing_resol,
            wave_correction=wave_correction,
            exposure_comp_type_str=exposure_comp_type_str,
            enable_cropping=enable_cropping, # Post-stitch crop
            strict_no_black_edges=strict_no_black_edges_input,
            transform_model_str=transform_model_str,
            blend_method=blend_method_lower,
            enable_gain_compensation=enable_gain_compensation,
            orb_nfeatures=orb_nfeatures,
            match_ratio_thresh=match_ratio_thresh,
            ransac_reproj_thresh=ransac_reproj_thresh,
            max_distance_coeff=max_distance_coeff,
            max_blending_width=max_blending_width,
            max_blending_height=max_blending_height,
            blend_smooth_ksize=blend_smooth_ksize,
            num_blend_levels=num_blend_levels,
            fixed_base_image_index=fixed_base_image_index
        )
        stitch_log += stitch_log_img # Append log from stitching function
        if stitched_single_rgba is not None:
            final_stitched_images_rgba = [stitched_single_rgba] # Result is a list containing the single image

        # Clean up loaded images for list mode after stitching attempt
        if 'images_bgr_cropped' in locals():
            for img_del in images_bgr_cropped:
                if img_del is not None:
                    del img_del
            del images_bgr_cropped
            gc.collect()

    elif len(image_paths) == 1:
        # This case should have been handled by the input type detection,
        # but add a message here just in case.
        log = log_and_print("Error: Only one image file provided or detected. Need at least two for image list stitching.\n", log)
        stitch_log = "" # No stitching attempted
    else:
        # This case means no valid input files were found or passed initial checks.
        log = log_and_print("Error: Input must be a single video file or at least two image files. No valid input found.\n", log)
        stitch_log = ""

    final_log = log + stitch_log
    if not final_stitched_images_rgba:
        # Avoid duplicating error messages if log already indicates failure
        if "Error:" not in final_log[-200:]: # Check last few lines for errors
            final_log = log_and_print("\nNo stitched images were generated.", final_log)

    # Saving Results to Temporary Files (Handling RGBA)
    output_file_paths = [] # List to store paths for the Gallery
    temp_dir = None

    if final_stitched_images_rgba:
        try:
            # Try to create a subdirectory within the default Gradio temp space if possible
            gradio_temp_base = tempfile.gettempdir()
            gradio_subdir = os.path.join(gradio_temp_base, 'gradio') # Default Gradio temp subdir name
            # Check if we can write there, otherwise use default temp dir
            target_temp_dir_base = gradio_subdir if os.path.exists(gradio_subdir) and os.access(gradio_subdir, os.W_OK) else gradio_temp_base

            if not os.path.exists(target_temp_dir_base):
                try:
                    os.makedirs(target_temp_dir_base)
                except OSError as e_mkdir:
                    final_log = log_and_print(f"Warning: Could not create temp directory '{target_temp_dir_base}', using default. Error: {e_mkdir}\n", final_log)
                    target_temp_dir_base = tempfile.gettempdir() # Fallback to system default temp

            temp_dir = tempfile.mkdtemp(prefix="stitch_run_", dir=target_temp_dir_base)
            final_log = log_and_print(f"\nInfo: Saving output images to temporary directory: {temp_dir}\n", final_log)

            for i, img_rgba in enumerate(final_stitched_images_rgba):
                if img_rgba is None or img_rgba.size == 0:
                    final_log = log_and_print(f"Warning: Skipping saving image index {i} because it is None or empty.\n", final_log)
                    continue

                # Default filename
                filename = f"stitched_{i+1:03d}.png" # PNG is required for transparency

                # If in multi-image mode (not video mode), and input paths exist
                if not is_video_input and image_paths:
                    try:
                        # Get the path of the last image
                        last_image_path = image_paths[-1]
                        # Get the filename and remove the extension (e.g., "filename.jpg" -> "filename")
                        last_image_name = os.path.splitext(os.path.basename(last_image_path))[0]
                        
                        if len(final_stitched_images_rgba) > 1:
                            # In case multiple results are produced, add numbering to avoid overwriting
                            filename = f"{last_image_name}_stitched_{i+1:03d}.png"
                        else:
                            # Normal single result, use requested format: [last_image_filename]_stitched.png
                            filename = f"{last_image_name}_stitched.png"
                    except Exception as e_name:
                        # If an error occurs, keep the default filename
                        pass

                # Use os.path.join for cross-platform compatibility
                full_path = os.path.join(temp_dir, filename)
                img_bgra = None # Initialize for finally block
                try:
                    if use_transparency:
                        # Handle RGBA to BGRA for saving
                        # The result coming from stitcher is in RGB(A) format
                        if img_rgba.shape[2] == 4:
                            img_bgra = cv2.cvtColor(img_rgba, cv2.COLOR_RGBA2BGRA)
                        else:
                            img_bgra = cv2.cvtColor(img_rgba, cv2.COLOR_RGB2BGR)
                    else:
                        # Transparency Disabled: Output should be RGB (saved as BGR)
                        if img_rgba.shape[2] == 4:
                            img_bgra = cv2.cvtColor(img_rgba, cv2.COLOR_RGBA2BGR) # Drop Alpha
                        else:
                            img_bgra = cv2.cvtColor(img_rgba, cv2.COLOR_RGB2BGR)
                
                    # Use imencode -> write pattern for better handling of paths/special chars
                    is_success, buf = cv2.imencode('.png', img_bgra)
                    if is_success:
                        with open(full_path, 'wb') as f:
                            f.write(buf)
                        # Use Gradio File obj or just path string? Gallery seems to prefer path strings.
                        output_file_paths.append((full_path, filename)) # Store the full path for Gradio Gallery
                        # final_log = log_and_print(f"Successfully saved: {filename}\n", final_log) # Can be verbose
                    else:
                     final_log = log_and_print(f"Warning: Failed to encode image for saving: {filename}\n", final_log)
                except cv2.error as e_cvt_write:
                    final_log = log_and_print(f"Error converting or encoding image {filename}: {e_cvt_write}\n", final_log)
                except IOError as e_io:
                    final_log = log_and_print(f"Error writing image file {filename} to {full_path}: {e_io}\n", final_log)
                except Exception as e_write:
                    final_log = log_and_print(f"Unexpected error writing image {filename} to {full_path}: {e_write}\n", final_log)
                finally:
                    if img_bgra is not None:
                        del img_bgra
                    gc.collect()
        except Exception as e_tempdir:
            final_log = log_and_print(f"Error creating temporary directory or saving output: {e_tempdir}\n", final_log)
            output_file_paths = [] # Fallback to empty list
            
    # --- Final Cleanup of RGB images list ---
    if 'final_stitched_images_rgba' in locals():
        for img_del in final_stitched_images_rgba:
            if img_del is not None:
                del img_del
        del final_stitched_images_rgba
        gc.collect()

    progress(1.0, desc="Finished!")
    final_log = log_and_print("\nCleanup complete.", final_log)

    # Return the LIST OF FILE PATHS for the Gallery, and the log
    return output_file_paths, final_log

# --- Define Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# OpenCV Image and Video Stitcher")
    gr.Markdown(
        "Upload multiple images (for list/panorama stitching) OR a single video file (for sequential frame stitching). "
        "Video frames are sampled incrementally based on the interval. "
        "Use Pre-Cropping to remove unwanted areas *before* stitching. Adjust other parameters and click 'Stitch'."
    )

    with gr.Row():
        with gr.Column(scale=1):
            stitch_button = gr.Button("Stitch", variant="primary")
            input_files = gr.File(
                label="Upload Images or a Video",
                # Common image and video types
                file_types=["image", ".mp4", ".avi", ".mov", ".mkv", ".wmv", ".webm"],
                file_count="multiple",
                elem_id="input_files"
            )

            # --- Parameters Grouping ---
            with gr.Accordion("Preprocessing Settings", open=True):
                use_transparency = gr.Checkbox(value=True, label="Use Transparency", 
                    info="If Checked: Preserves alpha channel (RGBA). Unchecked: Treats images as opaque and outputs RGB (Black background for warped areas).")
                crop_top_percent = gr.Slider(0.0, 49.0, step=0.5, value=0.0, label="Crop Top %",
                                                                         info="Percentage of height to remove from the TOP of each image/frame BEFORE stitching.")
                crop_bottom_percent = gr.Slider(0.0, 49.0, step=0.5, value=0.0, label="Crop Bottom %",
                                                                                info="Percentage of height to remove from the BOTTOM of each image/frame BEFORE stitching.")

            with gr.Accordion("OpenCV Stitcher Settings (Image List Mode Only)", open=True):
                stitcher_mode = gr.Radio(["SCANS", "PANORAMA", "DIRECT_PAIRWISE"], label="Stitcher Mode (Image List)", value="SCANS",
                    info=(
                        "Method for image list stitching. 'SCANS'/'PANORAMA': Use OpenCV's built-in Stitcher (optimized for translation/rotation). "
                        "'SCANS': Optimized for images primarily related by translation (like scanning documents or linear camera motion), potentially using simpler geometric models or assumptions internally. "
                        "'PANORAMA': Designed for images captured by rotating the camera around a central point. It uses full perspective transformations (Homography) to handle the complex geometric distortions typical in panoramic shots."
                        "'DIRECT_PAIRWISE': Skip OpenCV Stitcher and directly use sequential pairwise feature matching (same as video mode or fallback)."
                    )
                )
                registration_resol = gr.Slider(0.1, 1.0, step=0.05, value=0.6, label="Registration Resolution",
                                                                             info="Scale factor for the image resolution used during feature detection and matching. Lower values (e.g., 0.6) are faster but may miss features in high-res images. 1.0 uses full resolution.")
                seam_estimation_resol = gr.Slider(0.05, 1.0, step=0.05, value=0.1, label="Seam Estimation Resolution",
                                                                                    info="Scale factor for the image resolution used during seam finding (finding the optimal cut line). Lower values (e.g., 0.1) are much faster.")
                compositing_resol = gr.Slider(-1.0, 1.0, step=0.1, value=-1.0, label="Compositing Resolution",
                                                                            info="Scale factor for the image resolution used during the final blending stage. -1.0 uses the original source image resolution. Lower values reduce memory usage but might slightly blur the output.")
                wave_correction = gr.Checkbox(value=False, label="Enable Wave Correction",
                                                                            info="Attempts to correct perspective distortions (waviness) common in panoramas. Can increase processing time.")
                exposure_comp_type = gr.Dropdown(["NO", "GAIN", "GAIN_BLOCKS"], value="GAIN_BLOCKS", label="Exposure Compensation",
                                                                                 info="Method used by the built-in stitcher to adjust brightness/contrast differences between images. 'GAIN_BLOCKS' is generally preferred for varying lighting.")

            # --- Detailed Stitcher Settings (Used for Video, DIRECT_PAIRWISE, and Fallback) ---
            with gr.Accordion("Pairwise Stitching Settings (Video / Direct / Fallback)", open=True):
                fixed_base_image_index_input = gr.Number(value=-1, label="Fixed Base Image Index (0-based)", precision=0,
                                info="Specify the index of the image (0, 1, 2...) that should serve as the 'Bottom/Base' layer without blending. Overlapping images will cover it, but brightness will still adjust. Set -1 to disable.")
                transform_model = gr.Radio(["Homography", "Affine_Partial", "Affine_Full"], label="Pairwise Transform Model", value="Homography", # Default to Homography
                                info="Geometric model for pairwise alignment. 'Homography' handles perspective. 'Affine' (Partial/Full) handles translation, rotation, scale, shear (better for scans, less distortion risk). If stitching fails with one model, try another.")
                blend_method = gr.Radio(["Linear", "Multi-Band"], label="Blending Method", value="Multi-Band",
                                info="Algorithm for smoothing seams in overlapping regions when using the detailed stitcher (for video or image list fallback). 'Multi-Band' is often better but slower.")
                enable_gain_compensation = gr.Checkbox(value=True, label="Enable Gain Compensation",
                                info="Adjusts overall brightness difference *before* blending when using the detailed stitcher. Recommended.")
                orb_nfeatures = gr.Slider(500, 10000, step=100, value=2000, label="ORB Features",
                                info="Maximum ORB keypoints detected per image/frame. Used by the detailed stitcher (for video or image list fallback).")
                match_ratio_thresh = gr.Slider(0.5, 0.95, step=0.01, value=0.75, label="Match Ratio Threshold",
                                info="Lowe's ratio test threshold for filtering feature matches (lower = stricter). Used by the detailed stitcher (for video or image list fallback).")
                ransac_reproj_thresh = gr.Slider(1.0, 10.0, step=0.1, value=5.0, label="RANSAC Reproj Threshold",
                                info="Maximum reprojection error (pixels) allowed for a match to be considered an inlier by RANSAC during transformation estimation. Lower values are stricter.")
                max_distance_coeff = gr.Slider(0.1, 2.0, step=0.05, value=0.5, label="Max Distance Coeff",
                                info="Multiplier for image diagonal used to filter initial matches. Limits the pixel distance between matched keypoints (0.5 means half the diagonal).")
                max_blending_width = gr.Number(value=10000, label="Max Blending Width", precision=0,
                                info="Limits the canvas width during the detailed pairwise blending step to prevent excessive memory usage. Relevant for the detailed stitcher.")
                max_blending_height = gr.Number(value=10000, label="Max Blending Height", precision=0,
                                info="Limits the canvas height during the detailed pairwise blending step to prevent excessive memory usage. Relevant for the detailed stitcher.")
                blend_smooth_ksize = gr.Number(value=15, label="Blend Smooth Kernel Size", precision=0,
                                info="Size of Gaussian kernel to smooth blend mask/weights. Must be POSITIVE ODD integer to enable smoothing (e.g., 5, 15, 21). Set to -1 or an even number to disable smoothing.")
                num_blend_levels = gr.Slider(2, 7, step=1, value=4, label="Multi-Band Blend Levels",
                                info="Number of pyramid levels for Multi-Band blending. Fewer levels are faster but might have less smooth transitions.")

            with gr.Accordion("Video Stitcher Settings", open=False):
                sample_interval_ms = gr.Number(value=3000, label="Sample Interval (ms)", precision=0,
                                info="Time interval (in milliseconds) between sampled frames for video stitching. Smaller values sample more frames, increasing processing time but potentially improving tracking.")
                max_composite_width_video = gr.Number(value=10000, label="Max Composite Width (Video)", precision=0,
                                info="Limits the width of the stitched output during video processing. If exceeded, the current result is saved and stitching restarts with the next frame. 0 = no limit.")
                max_composite_height_video = gr.Number(value=10000, label="Max Composite Height (Video)", precision=0,
                                info="Limits the height of the stitched output during video processing. If exceeded, the current result is saved and stitching restarts with the next frame. 0 = no limit.")

            with gr.Accordion("Postprocessing Settings", open=False):
                enable_cropping = gr.Checkbox(value=True, label="Crop Black Borders (Post-Stitch)",
                                info="Automatically remove black border areas from the final stitched image(s) AFTER stitching.")
                strict_no_black_edges_checkbox = gr.Checkbox(value=False, label="Strict No Black Edges (Post-Crop)",
                                info="If 'Crop Black Borders' is enabled, this forces removal of *any* remaining black pixels directly on the image edges after the main crop. Might slightly shrink the image further.")

        with gr.Column(scale=1):
            output_gallery = gr.Gallery(
                label="Stitched Results", elem_id="output_gallery", object_fit="contain", type="filepath", rows=2, preview=True, height="auto", format="png", container=True)
            output_log = gr.Textbox(
                label="Status / Log", lines=20, interactive=False, show_copy_button=True)


        # Define the list of inputs for the button click event
        inputs=[
                input_files,
                # Preprocessing
                use_transparency,
                crop_top_percent,
                crop_bottom_percent,
                # OpenCV Stitcher (Image List)
                stitcher_mode, # the selected string ("SCANS", "PANORAMA", or "DIRECT_PAIRWISE")
                registration_resol,
                seam_estimation_resol,
                compositing_resol,
                wave_correction,
                exposure_comp_type,
                # Postprocessing
                enable_cropping,
                strict_no_black_edges_checkbox,
                fixed_base_image_index_input,
                # Detailed Stitcher Settings
                transform_model,
                blend_method,
                enable_gain_compensation,
                orb_nfeatures,
                match_ratio_thresh,
                ransac_reproj_thresh,
                max_distance_coeff,
                max_blending_width,
                max_blending_height,
                blend_smooth_ksize,
                num_blend_levels,
                # Video specific settings
                sample_interval_ms,
                max_composite_width_video,
                max_composite_height_video
         ]

        # Define examples (update to include the new transform_model parameter)
        examples = [
        [
            ["examples/Wetter-Panorama/Wetter-Panorama1[NIuO6hrFTrg].mp4"],
            True, 0, 20,
            "DIRECT_PAIRWISE", 0.6, 0.1, -1, False, "GAIN_BLOCKS",
            True, False, -1,
            "Homography", "Multi-Band", True, 5000, 0.5, 5.0, 0.5, 10000, 10000, 15, 4,
            2500, 10000, 10000,
        ],
        [
            ["examples/Wetter-Panorama/Wetter-Panorama2[NIuO6hrFTrg].mp4"],
            True, 0, 20,
            "DIRECT_PAIRWISE", 0.6, 0.1, -1, False, "GAIN_BLOCKS",
            True, False, -1,
            "Homography", "Multi-Band", True, 5000, 0.5, 5.0, 0.5, 10000, 10000, 15, 4,
            2500, 10000, 10000,
        ],
        [
            ["examples/NieRAutomata/nier2B_01.jpg", "examples/NieRAutomata/nier2B_02.jpg", "examples/NieRAutomata/nier2B_03.jpg", "examples/NieRAutomata/nier2B_04.jpg", "examples/NieRAutomata/nier2B_05.jpg",
             "examples/NieRAutomata/nier2B_06.jpg", "examples/NieRAutomata/nier2B_07.jpg", "examples/NieRAutomata/nier2B_08.jpg", "examples/NieRAutomata/nier2B_09.jpg", "examples/NieRAutomata/nier2B_10.jpg", ],
            True, 0, 0,
            "PANORAMA", 0.6, 0.1, -1, False, "GAIN_BLOCKS",
            True, False, -1,
            "Homography", "Multi-Band", True, 5000, 0.5, 5.0, 0.5, 10000, 10000, 15, 4,
            5000, 10000, 10000,
        ],
        [
            ["examples/cat/cat_left.jpg", "examples/cat/cat_right.jpg"],
            True, 0, 0,
            "SCANS", 0.6, 0.1, -1, False, "GAIN_BLOCKS",
            True, False, -1,
            "Affine_Partial", "Linear", True, 5000, 0.5, 5.0, 0.5, 10000, 10000, 15, 4,
            5000, 10000, 10000,
        ],
        [
            ["examples/ギルドの受付嬢ですが/Girumasu_1.jpg", "examples/ギルドの受付嬢ですが/Girumasu_2.jpg", "examples/ギルドの受付嬢ですが/Girumasu_3.jpg"],
            True, 0, 0,
            "PANORAMA", 0.6, 0.1, -1, False, "GAIN_BLOCKS",
            True, False, -1,
            "Affine_Partial", "Linear", True, 5000, 0.65, 5.0, 0.5, 10000, 10000, 15, 4,
            5000, 10000, 10000,
        ],
        [
            ["examples/photographs1/img1.jpg", "examples/photographs1/img2.jpg", "examples/photographs1/img3.jpg", "examples/photographs1/img4.jpg"],
            True, 0, 0,
            "PANORAMA", 0.6, 0.1, -1, True, "GAIN_BLOCKS",
            True, False, -1,
            "Homography", "Linear", True, 5000, 0.5, 5.0, 0.5, 10000, 10000, 15, 4,
            5000, 10000, 10000,
        ]
    ]
    gr.Examples(examples, inputs=inputs, label="Example Configurations")

    # Connect button click to the function
    stitch_button.click(
        fn=run_stitching_interface,
        inputs=inputs,
        outputs=[output_gallery, output_log]
    )

# --- Main Execution Block ---
if __name__ == "__main__":
    print("Starting Gradio interface with selectable transformation model...")
    # Enable queue for handling multiple requests and progress updates
    demo.queue()
    # Launch the interface
    demo.launch(inbrowser=True)