Spaces:
Running
Running
File size: 9,987 Bytes
33afddb 93be849 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 93be849 f5f1dc9 93be849 f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb f5f1dc9 33afddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import psycopg2
from psycopg2.extras import execute_values
import pandas as pd
from sentence_transformers import SentenceTransformer
import os
import datetime
import logging
from collections import deque
from fastapi import FastAPI, BackgroundTasks, HTTPException
from contextlib import asynccontextmanager
from fastapi.responses import HTMLResponse
import threading
# --- Configuration ---
SUPABASE_CONNECTION_STRING = os.getenv("SUPABASE_CONNECTION_STRING")
# --- Toggles & Tuning ---
PROCESSING_CHUNK_SIZE = 32
EMBEDDING_BATCH_SIZE = 32
DRY_RUN = False
# --- Global State ---
model = None
execution_logs = deque(maxlen=50)
is_processing = False
processing_lock = threading.Lock()
# --- Lifespan Manager ---
@asynccontextmanager
async def lifespan(app: FastAPI):
global model
print("β³ Loading Model...")
model = SentenceTransformer('Alibaba-NLP/gte-modernbert-base', trust_remote_code=True)
print("β
Model Loaded.")
yield
print("π Shutting down...")
app = FastAPI(lifespan=lifespan)
# --- Helper Functions ---
def fetch_and_lock_chunk(conn, chunk_size):
"""
Fetches candidates from the denormalized table where embeddings are missing.
"""
query = """
SELECT
id,
name,
summary,
work_experience,
projects,
education,
achievements,
certifications,
volunteering,
skills,
languages
FROM public.candidates
WHERE
-- Condition 1: Embedding is missing (New Job)
embeddings IS NULL
OR
-- Condition 2: Job created after the last embedding (Retry/Update Logic)
-- Note: Since there is no 'updated_at' column, we rely on created_at vs embeddings_created_at
(embeddings_created_at IS NOT NULL AND created_at > embeddings_created_at)
FOR UPDATE SKIP LOCKED
LIMIT %s
"""
# Note: If you add an 'updated_at' column later, change WHERE to:
# WHERE embeddings IS NULL OR updated_at > embeddings_created_at
return pd.read_sql_query(query, conn, params=(chunk_size,))
def clean_and_format_text(row):
"""
Parses the JSONB and Array columns from the new schema to create a
rich text representation for embedding.
"""
text_parts = []
# 1. Basic Info
if row.get('name'):
text_parts.append(f"Name: {row['name']}")
if row.get('summary'):
text_parts.append(f"Summary: {row['summary']}")
# 2. Skills (Postgres Array -> Python List)
if row.get('skills') and isinstance(row['skills'], list):
# Filter out empty strings/None
valid_skills = [s for s in row['skills'] if s]
if valid_skills:
text_parts.append(f"Skills: {', '.join(valid_skills)}")
# 3. Work Experience (JSONB List of Dicts)
# Schema keys: role, company, description, duration
if row.get('work_experience') and isinstance(row['work_experience'], list):
exps = []
for item in row['work_experience']:
if isinstance(item, dict):
role = item.get('role', '')
company = item.get('company', '')
desc = item.get('description', '')
# Format: "Role at Company: Description"
entry = f"{role} at {company}".strip()
if desc:
entry += f": {desc}"
exps.append(entry)
if exps:
text_parts.append("Work Experience:\n" + "\n".join(exps))
# 4. Projects (JSONB List of Dicts)
# Schema keys: title, description, link
if row.get('projects') and isinstance(row['projects'], list):
projs = []
for item in row['projects']:
if isinstance(item, dict):
title = item.get('title', '')
desc = item.get('description', '')
entry = f"{title}".strip()
if desc:
entry += f": {desc}"
projs.append(entry)
if projs:
text_parts.append("Projects:\n" + "\n".join(projs))
# 5. Education (JSONB List of Dicts)
# Schema keys: degree, institution, year
if row.get('education') and isinstance(row['education'], list):
edus = []
for item in row['education']:
if isinstance(item, dict):
degree = item.get('degree', '')
inst = item.get('institution', '')
entry = f"{degree} from {inst}".strip()
edus.append(entry)
if edus:
text_parts.append("Education: " + ", ".join(edus))
# 6. Certifications (JSONB List of Dicts)
# Schema keys: name, issuer
if row.get('certifications') and isinstance(row['certifications'], list):
certs = []
for item in row['certifications']:
if isinstance(item, dict):
name = item.get('name', '')
issuer = item.get('issuer', '')
entry = f"{name} by {issuer}".strip()
certs.append(entry)
if certs:
text_parts.append("Certifications: " + ", ".join(certs))
# 7. Achievements (JSONB List of Dicts)
if row.get('achievements') and isinstance(row['achievements'], list):
achievements = []
for item in row['achievements']:
if isinstance(item, dict):
title = item.get('title', '')
desc = item.get('description', '')
entry = f"{title}: {desc}".strip()
achievements.append(entry)
if achievements:
text_parts.append("Achievements: " + "; ".join(achievements))
return "\n\n".join(text_parts)
def update_db_batch(conn, updates):
if DRY_RUN: return
# Updated to target public.candidates and cast ID to UUID
query = """
UPDATE public.candidates AS c
SET embeddings = data.vector::vector,
embeddings_created_at = NOW()
FROM (VALUES %s) AS data (id, vector)
WHERE c.id = data.id::uuid
"""
cursor = conn.cursor()
try:
execute_values(cursor, query, updates)
conn.commit()
except Exception as e:
conn.rollback()
raise e
finally:
cursor.close()
def run_worker_logic():
"""
The core logic that runs one single batch processing.
"""
log_buffer = []
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_buffer.append(f"<b>BATCH RUN: {timestamp}</b>")
conn = None
try:
conn = psycopg2.connect(SUPABASE_CONNECTION_STRING, sslmode='require')
# 1. Fetch & Lock
df = fetch_and_lock_chunk(conn, PROCESSING_CHUNK_SIZE)
if df.empty:
conn.rollback()
log_buffer.append("π€ No pending candidates found.")
execution_logs.appendleft("<br>".join(log_buffer))
return "No data"
log_buffer.append(f"π Locked & Processing {len(df)} candidates...")
# 2. Clean Text
df['full_text'] = df.apply(clean_and_format_text, axis=1)
# 3. Log Inputs (For the Root API view)
for index, row in df.iterrows():
log_buffer.append(f"<div style='border:1px solid #ccc; margin:5px; padding:5px; background:#f9f9f9'>")
# row['id'] is now the UUID
log_buffer.append(f"<strong>ID: {row['id']} ({row.get('name', 'Unknown')})</strong>")
log_buffer.append(f"<pre style='white-space: pre-wrap;'>{row['full_text']}</pre>")
log_buffer.append("</div>")
# 4. Generate Embeddings
embeddings = model.encode(
df['full_text'].tolist(),
batch_size=EMBEDDING_BATCH_SIZE,
show_progress_bar=False,
convert_to_numpy=True,
normalize_embeddings=True
)
# 5. Update DB
# Ensure ID is converted to string for the tuple list if it isn't already
updates = list(zip(df['id'].astype(str).tolist(), embeddings.tolist()))
if not DRY_RUN:
update_db_batch(conn, updates)
log_buffer.append(f"β
Successfully updated {len(df)} profiles.")
else:
conn.rollback()
log_buffer.append("β οΈ Dry Run: No DB updates made.")
except Exception as e:
if conn: conn.rollback()
log_buffer.append(f"β ERROR: {str(e)}")
print(f"Error: {e}")
finally:
if conn: conn.close()
execution_logs.appendleft("<br>".join(log_buffer))
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def read_root():
html_content = """
<html>
<head>
<title>Embedding Worker Logs</title>
<style>
body { font-family: monospace; padding: 20px; }
h1 { color: #333; }
.log-entry { margin-bottom: 20px; border-bottom: 2px solid #333; padding-bottom: 20px; }
</style>
</head>
<body>
<h1>π Candidates Embedding Worker</h1>
<p><i>Most recent batches shown first.</i></p>
<hr>
"""
if not execution_logs:
html_content += "<p>No logs yet. Hit the <code>/trigger-batch</code> endpoint to start processing.</p>"
for entry in execution_logs:
html_content += f"<div class='log-entry'>{entry}</div>"
html_content += "</body></html>"
return html_content
@app.get("/trigger-batch")
async def trigger_processing(background_tasks: BackgroundTasks):
if processing_lock.locked():
return {"status": "busy", "message": "Worker is currently processing a previous batch."}
background_tasks.add_task(wrapped_worker)
return {"status": "started", "message": "Batch processing started in background."}
def wrapped_worker():
if processing_lock.acquire(blocking=False):
try:
run_worker_logic()
finally:
processing_lock.release() |