Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,14 @@
|
|
| 1 |
-
# app.py — TalkClone (HF Space, 1-column, persistent output,
|
| 2 |
|
| 3 |
-
import os, re, tempfile, shutil
|
| 4 |
import numpy as np
|
| 5 |
import soundfile as sf
|
| 6 |
import gradio as gr
|
| 7 |
|
| 8 |
-
# Agree to Coqui CPML non-interactively on Spaces
|
| 9 |
os.environ.setdefault("COQUI_TOS_AGREED", "1")
|
| 10 |
|
| 11 |
MODEL_NAME = "tts_models/multilingual/multi-dataset/xtts_v2"
|
| 12 |
|
| 13 |
-
# Show labels, send codes (XTTS v2 supported only)
|
| 14 |
LANGS = [
|
| 15 |
("English", "en"),
|
| 16 |
("Spanish", "es"),
|
|
@@ -35,7 +33,6 @@ LANG_MAP = {name: code for name, code in LANGS}
|
|
| 35 |
|
| 36 |
_tts = None
|
| 37 |
def get_tts():
|
| 38 |
-
"""Lazy-load TTS; try GPU if available, else CPU."""
|
| 39 |
global _tts
|
| 40 |
if _tts is not None:
|
| 41 |
return _tts
|
|
@@ -48,7 +45,6 @@ def get_tts():
|
|
| 48 |
use_gpu = torch.cuda.is_available()
|
| 49 |
except Exception:
|
| 50 |
use_gpu = False
|
| 51 |
-
|
| 52 |
from TTS.api import TTS
|
| 53 |
try:
|
| 54 |
_tts = TTS(MODEL_NAME, gpu=use_gpu)
|
|
@@ -67,24 +63,27 @@ def synth_to_file_safe(tts, txt, out_path, wav_path, lang, speed):
|
|
| 67 |
tts.tts_to_file(text=txt, file_path=out_path,
|
| 68 |
speaker_wav=wav_path, language=lang)
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
def tts_clone(text, ref_audio, lang_label, speed, split_sentences, progress=gr.Progress(track_tqdm=True)):
|
| 71 |
if ref_audio is None:
|
| 72 |
raise gr.Error("Upload a reference voice (10–60s, clean speech).")
|
| 73 |
text = clean_text(text)
|
| 74 |
if not text:
|
| 75 |
raise gr.Error("Please enter some text.")
|
| 76 |
-
|
| 77 |
-
# Limit extremely long jobs on free CPU
|
| 78 |
if len(text) > 1400 and not split_sentences:
|
| 79 |
raise gr.Error("Text is very long. Enable 'Auto split' or paste a shorter chunk on CPU.")
|
| 80 |
|
| 81 |
lang = LANG_MAP.get(lang_label, "en")
|
| 82 |
wav_path = ref_audio
|
| 83 |
|
| 84 |
-
# Sentence split + also break very long sentences into ~200 chars
|
| 85 |
chunks = [text]
|
| 86 |
if split_sentences:
|
| 87 |
-
rough = [s.strip() for s in re.split(r'(?<=[
|
| 88 |
chunks = []
|
| 89 |
for s in rough:
|
| 90 |
if len(s) <= 220:
|
|
@@ -95,8 +94,6 @@ def tts_clone(text, ref_audio, lang_label, speed, split_sentences, progress=gr.P
|
|
| 95 |
|
| 96 |
tts = get_tts()
|
| 97 |
out_wavs = []
|
| 98 |
-
|
| 99 |
-
# Use a temp dir for parts, but write the FINAL file to a persistent temp path
|
| 100 |
with tempfile.TemporaryDirectory() as td:
|
| 101 |
total = max(len(chunks), 1)
|
| 102 |
for i, chunk in enumerate(chunks, 1):
|
|
@@ -106,68 +103,67 @@ def tts_clone(text, ref_audio, lang_label, speed, split_sentences, progress=gr.P
|
|
| 106 |
data, sr = sf.read(part_path)
|
| 107 |
out_wavs.append((data, sr))
|
| 108 |
|
| 109 |
-
#
|
| 110 |
if len(out_wavs) == 1:
|
| 111 |
final_data, sr = out_wavs[0]
|
| 112 |
else:
|
| 113 |
sr = out_wavs[0][1]
|
| 114 |
final_data = np.concatenate([d for d, _ in out_wavs], axis=0)
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
# ==== Styles (1 column + colors + hide HF/Gradio UI chrome) ====
|
| 124 |
CUSTOM_CSS = """
|
| 125 |
.gradio-container { max-width: 860px !important; margin: 0 auto; }
|
| 126 |
-
|
| 127 |
#wrap, #ref, #lang, #txt, #spd, #split, #out_audio, #dl {
|
| 128 |
-
background: #f8fafc !important;
|
| 129 |
-
border: 1px solid #e5e7eb !important;
|
| 130 |
border-radius: 14px !important;
|
| 131 |
padding: 14px !important;
|
| 132 |
}
|
| 133 |
-
|
| 134 |
-
/* Make the component surfaces non-white */
|
| 135 |
-
#ref, #out_audio, #dl { background: #eef2ff !important; } /* indigo-50-ish */
|
| 136 |
-
|
| 137 |
-
/* Primary button color */
|
| 138 |
#gen button, #gen { background: #10b981 !important; color: #fff !important; }
|
| 139 |
#gen button:hover { filter: brightness(0.95); }
|
| 140 |
-
|
| 141 |
-
/* Hide footer/API/Settings & obvious Space links */
|
| 142 |
footer, .footer, #footer,
|
| 143 |
a[href*="gradio.live"], a[href*="gradio.app"], a[href*="/api"], a[href*="hf.space"],
|
| 144 |
button[aria-label="Settings"],
|
| 145 |
[data-testid="block-analytics"], [data-testid="embed-info"] { display: none !important; }
|
| 146 |
"""
|
| 147 |
|
| 148 |
-
with gr.Blocks(
|
| 149 |
-
title="TalkClone - Voice Cloning & TTS",
|
| 150 |
-
css=CUSTOM_CSS,
|
| 151 |
-
analytics_enabled=False
|
| 152 |
-
) as demo:
|
| 153 |
with gr.Column(elem_id="wrap"):
|
| 154 |
gr.Markdown("## TalkClone — Text-to-Speech with Voice Cloning")
|
| 155 |
gr.Markdown("Upload a short **reference voice** (10–60s), choose **language**, enter **text**, then **Generate**. "
|
| 156 |
"On free CPU, keep text short or enable **Auto split** for speed.")
|
| 157 |
|
| 158 |
ref_audio = gr.Audio(label="Reference Voice (WAV/MP3)", type="filepath", elem_id="ref")
|
| 159 |
-
language
|
| 160 |
-
text
|
| 161 |
-
speed
|
| 162 |
-
split
|
| 163 |
-
submit
|
| 164 |
|
| 165 |
-
output
|
| 166 |
-
download = gr.
|
| 167 |
|
| 168 |
def run_and_return(text, ref_audio, language, speed, split):
|
| 169 |
-
|
| 170 |
-
|
|
|
|
| 171 |
|
| 172 |
submit.click(run_and_return,
|
| 173 |
inputs=[text, ref_audio, language, speed, split],
|
|
|
|
| 1 |
+
# app.py — TalkClone (HF Space, 1-column, persistent output, DownloadButton)
|
| 2 |
|
| 3 |
+
import os, re, tempfile, shutil, time
|
| 4 |
import numpy as np
|
| 5 |
import soundfile as sf
|
| 6 |
import gradio as gr
|
| 7 |
|
|
|
|
| 8 |
os.environ.setdefault("COQUI_TOS_AGREED", "1")
|
| 9 |
|
| 10 |
MODEL_NAME = "tts_models/multilingual/multi-dataset/xtts_v2"
|
| 11 |
|
|
|
|
| 12 |
LANGS = [
|
| 13 |
("English", "en"),
|
| 14 |
("Spanish", "es"),
|
|
|
|
| 33 |
|
| 34 |
_tts = None
|
| 35 |
def get_tts():
|
|
|
|
| 36 |
global _tts
|
| 37 |
if _tts is not None:
|
| 38 |
return _tts
|
|
|
|
| 45 |
use_gpu = torch.cuda.is_available()
|
| 46 |
except Exception:
|
| 47 |
use_gpu = False
|
|
|
|
| 48 |
from TTS.api import TTS
|
| 49 |
try:
|
| 50 |
_tts = TTS(MODEL_NAME, gpu=use_gpu)
|
|
|
|
| 63 |
tts.tts_to_file(text=txt, file_path=out_path,
|
| 64 |
speaker_wav=wav_path, language=lang)
|
| 65 |
|
| 66 |
+
def safe_filename(seed_text: str, lang_code: str) -> str:
|
| 67 |
+
base = clean_text(seed_text)[:40] or "talkclone"
|
| 68 |
+
base = re.sub(r"[^A-Za-z0-9_-]+", "_", base).strip("_")
|
| 69 |
+
ts = time.strftime("%Y%m%d-%H%M%S")
|
| 70 |
+
return f"{base}_{lang_code}_{ts}.wav"
|
| 71 |
+
|
| 72 |
def tts_clone(text, ref_audio, lang_label, speed, split_sentences, progress=gr.Progress(track_tqdm=True)):
|
| 73 |
if ref_audio is None:
|
| 74 |
raise gr.Error("Upload a reference voice (10–60s, clean speech).")
|
| 75 |
text = clean_text(text)
|
| 76 |
if not text:
|
| 77 |
raise gr.Error("Please enter some text.")
|
|
|
|
|
|
|
| 78 |
if len(text) > 1400 and not split_sentences:
|
| 79 |
raise gr.Error("Text is very long. Enable 'Auto split' or paste a shorter chunk on CPU.")
|
| 80 |
|
| 81 |
lang = LANG_MAP.get(lang_label, "en")
|
| 82 |
wav_path = ref_audio
|
| 83 |
|
|
|
|
| 84 |
chunks = [text]
|
| 85 |
if split_sentences:
|
| 86 |
+
rough = [s.strip() for s in re.split(r'(?<=[.!?؟۔]|[\u0964\u0965])\s+', text) if s.strip()]
|
| 87 |
chunks = []
|
| 88 |
for s in rough:
|
| 89 |
if len(s) <= 220:
|
|
|
|
| 94 |
|
| 95 |
tts = get_tts()
|
| 96 |
out_wavs = []
|
|
|
|
|
|
|
| 97 |
with tempfile.TemporaryDirectory() as td:
|
| 98 |
total = max(len(chunks), 1)
|
| 99 |
for i, chunk in enumerate(chunks, 1):
|
|
|
|
| 103 |
data, sr = sf.read(part_path)
|
| 104 |
out_wavs.append((data, sr))
|
| 105 |
|
| 106 |
+
# concat
|
| 107 |
if len(out_wavs) == 1:
|
| 108 |
final_data, sr = out_wavs[0]
|
| 109 |
else:
|
| 110 |
sr = out_wavs[0][1]
|
| 111 |
final_data = np.concatenate([d for d, _ in out_wavs], axis=0)
|
| 112 |
|
| 113 |
+
# write to persistent temp + copy to a nice-named path for downloading
|
| 114 |
+
ntf = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
| 115 |
+
ntf_path = ntf.name
|
| 116 |
+
ntf.close()
|
| 117 |
+
sf.write(ntf_path, final_data, sr)
|
| 118 |
|
| 119 |
+
pretty_name = os.path.join("/tmp", safe_filename(text, lang))
|
| 120 |
+
try:
|
| 121 |
+
shutil.copyfile(ntf_path, pretty_name)
|
| 122 |
+
dl_path = pretty_name
|
| 123 |
+
except Exception:
|
| 124 |
+
dl_path = ntf_path # fallback
|
| 125 |
+
|
| 126 |
+
# return both: audio preview path, and a file path for DownloadButton
|
| 127 |
+
return ntf_path, dl_path
|
| 128 |
|
|
|
|
| 129 |
CUSTOM_CSS = """
|
| 130 |
.gradio-container { max-width: 860px !important; margin: 0 auto; }
|
|
|
|
| 131 |
#wrap, #ref, #lang, #txt, #spd, #split, #out_audio, #dl {
|
| 132 |
+
background: #f8fafc !important;
|
| 133 |
+
border: 1px solid #e5e7eb !important;
|
| 134 |
border-radius: 14px !important;
|
| 135 |
padding: 14px !important;
|
| 136 |
}
|
| 137 |
+
#ref, #out_audio, #dl { background: #eef2ff !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
#gen button, #gen { background: #10b981 !important; color: #fff !important; }
|
| 139 |
#gen button:hover { filter: brightness(0.95); }
|
| 140 |
+
/* hide HF/Gradio chrome */
|
|
|
|
| 141 |
footer, .footer, #footer,
|
| 142 |
a[href*="gradio.live"], a[href*="gradio.app"], a[href*="/api"], a[href*="hf.space"],
|
| 143 |
button[aria-label="Settings"],
|
| 144 |
[data-testid="block-analytics"], [data-testid="embed-info"] { display: none !important; }
|
| 145 |
"""
|
| 146 |
|
| 147 |
+
with gr.Blocks(title="TalkClone - Voice Cloning & TTS", css=CUSTOM_CSS, analytics_enabled=False) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
with gr.Column(elem_id="wrap"):
|
| 149 |
gr.Markdown("## TalkClone — Text-to-Speech with Voice Cloning")
|
| 150 |
gr.Markdown("Upload a short **reference voice** (10–60s), choose **language**, enter **text**, then **Generate**. "
|
| 151 |
"On free CPU, keep text short or enable **Auto split** for speed.")
|
| 152 |
|
| 153 |
ref_audio = gr.Audio(label="Reference Voice (WAV/MP3)", type="filepath", elem_id="ref")
|
| 154 |
+
language = gr.Dropdown(choices=LANG_LABELS, value="English", label="Language", elem_id="lang")
|
| 155 |
+
text = gr.Textbox(label="Text", lines=6, placeholder="Type or paste your text here…", elem_id="txt")
|
| 156 |
+
speed = gr.Slider(0.7, 1.3, value=1.0, step=0.05, label="Speed", elem_id="spd")
|
| 157 |
+
split = gr.Checkbox(value=True, label="Auto split long text by sentence", elem_id="split")
|
| 158 |
+
submit = gr.Button("Generate", variant="primary", elem_id="gen")
|
| 159 |
|
| 160 |
+
output = gr.Audio(label="Cloned Speech", type="filepath", interactive=False, elem_id="out_audio")
|
| 161 |
+
download = gr.DownloadButton(label="Download audio", elem_id="dl")
|
| 162 |
|
| 163 |
def run_and_return(text, ref_audio, language, speed, split):
|
| 164 |
+
audio_path, dl_path = tts_clone(text, ref_audio, language, speed, split)
|
| 165 |
+
# set button to download the file we just wrote
|
| 166 |
+
return audio_path, gr.update(value=dl_path, label=f"Download ({os.path.basename(dl_path)})")
|
| 167 |
|
| 168 |
submit.click(run_and_return,
|
| 169 |
inputs=[text, ref_audio, language, speed, split],
|