Spaces:
Sleeping
Sleeping
Speed optimizations: pre-download models, optimized caching, model CPU offloading
Browse files- Dockerfile +18 -0
- models/image_generator.py +35 -10
- preload_models.py +55 -0
Dockerfile
CHANGED
|
@@ -2,11 +2,29 @@ FROM python:3.9-slim
|
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
COPY requirements.txt .
|
| 6 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 7 |
|
|
|
|
| 8 |
COPY . .
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
EXPOSE 7860
|
| 11 |
|
| 12 |
CMD ["python", "app.py"]
|
|
|
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
+
# Install system dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y \
|
| 7 |
+
git \
|
| 8 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 9 |
+
|
| 10 |
+
# Copy requirements and install Python dependencies
|
| 11 |
COPY requirements.txt .
|
| 12 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 13 |
|
| 14 |
+
# Copy application code
|
| 15 |
COPY . .
|
| 16 |
|
| 17 |
+
# Set environment variables for HuggingFace caching
|
| 18 |
+
ENV HF_HOME=/app/model_cache
|
| 19 |
+
ENV TRANSFORMERS_CACHE=/app/model_cache
|
| 20 |
+
ENV HF_DATASETS_CACHE=/app/model_cache
|
| 21 |
+
|
| 22 |
+
# Create cache directory with proper permissions
|
| 23 |
+
RUN mkdir -p /app/model_cache && chmod 755 /app/model_cache
|
| 24 |
+
|
| 25 |
+
# Pre-download models during build time for faster startup
|
| 26 |
+
RUN python preload_models.py
|
| 27 |
+
|
| 28 |
EXPOSE 7860
|
| 29 |
|
| 30 |
CMD ["python", "app.py"]
|
models/image_generator.py
CHANGED
|
@@ -22,20 +22,27 @@ class ImageGenerator:
|
|
| 22 |
self.temp_dir = tempfile.mkdtemp()
|
| 23 |
|
| 24 |
def load_model(self):
|
| 25 |
-
"""Load the Stable Diffusion model"""
|
| 26 |
try:
|
| 27 |
logger.info(f"π Loading Stability AI model on {self.device}...")
|
| 28 |
|
| 29 |
# Use Stability AI's SDXL model for highest quality
|
| 30 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 31 |
|
| 32 |
-
#
|
|
|
|
|
|
|
|
|
|
| 33 |
self.pipeline = StableDiffusionPipeline.from_pretrained(
|
| 34 |
model_id,
|
| 35 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
| 36 |
safety_checker=None, # Disable safety checker for faster inference
|
| 37 |
requires_safety_checker=False,
|
| 38 |
-
use_safetensors=True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
|
| 41 |
self.pipeline.to(self.device)
|
|
@@ -52,14 +59,21 @@ class ImageGenerator:
|
|
| 52 |
except:
|
| 53 |
logger.info("βΉοΈ XFormers not available, using default attention")
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
self.pipeline.enable_sequential_cpu_offload()
|
|
|
|
|
|
|
| 60 |
logger.info(f"β
Stability AI SDXL loaded on GPU: {torch.cuda.get_device_name(0)}")
|
| 61 |
else:
|
| 62 |
-
# For CPU-only mode, don't use offloading
|
| 63 |
logger.info("β
Stability AI SDXL loaded on CPU")
|
| 64 |
|
| 65 |
except Exception as e:
|
|
@@ -73,7 +87,9 @@ class ImageGenerator:
|
|
| 73 |
model_id,
|
| 74 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
| 75 |
safety_checker=None,
|
| 76 |
-
requires_safety_checker=False
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
self.pipeline.to(self.device)
|
|
@@ -81,8 +97,17 @@ class ImageGenerator:
|
|
| 81 |
if hasattr(self.pipeline, "enable_attention_slicing"):
|
| 82 |
self.pipeline.enable_attention_slicing()
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
if self.device.type == "cuda":
|
| 85 |
-
self.pipeline
|
|
|
|
|
|
|
|
|
|
| 86 |
logger.info(f"β
Fallback SD v1.5 loaded on GPU: {torch.cuda.get_device_name(0)}")
|
| 87 |
else:
|
| 88 |
logger.info("β
Fallback SD v1.5 loaded on CPU")
|
|
|
|
| 22 |
self.temp_dir = tempfile.mkdtemp()
|
| 23 |
|
| 24 |
def load_model(self):
|
| 25 |
+
"""Load the Stable Diffusion model with optimized caching"""
|
| 26 |
try:
|
| 27 |
logger.info(f"π Loading Stability AI model on {self.device}...")
|
| 28 |
|
| 29 |
# Use Stability AI's SDXL model for highest quality
|
| 30 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 31 |
|
| 32 |
+
# Optimize caching for faster subsequent loads
|
| 33 |
+
cache_dir = os.environ.get("HF_HOME", "/tmp/huggingface_cache")
|
| 34 |
+
|
| 35 |
+
# Load pipeline with optimized settings
|
| 36 |
self.pipeline = StableDiffusionPipeline.from_pretrained(
|
| 37 |
model_id,
|
| 38 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
| 39 |
safety_checker=None, # Disable safety checker for faster inference
|
| 40 |
requires_safety_checker=False,
|
| 41 |
+
use_safetensors=True,
|
| 42 |
+
cache_dir=cache_dir,
|
| 43 |
+
resume_download=True, # Resume interrupted downloads
|
| 44 |
+
local_files_only=False, # Allow downloads but prefer cache
|
| 45 |
+
variant="fp16" if self.device.type == "cuda" else None # Use fp16 variant for GPU
|
| 46 |
)
|
| 47 |
|
| 48 |
self.pipeline.to(self.device)
|
|
|
|
| 59 |
except:
|
| 60 |
logger.info("βΉοΈ XFormers not available, using default attention")
|
| 61 |
|
| 62 |
+
# Enable model CPU offloading for memory optimization
|
| 63 |
+
if hasattr(self.pipeline, "enable_model_cpu_offload"):
|
| 64 |
+
try:
|
| 65 |
+
self.pipeline.enable_model_cpu_offload()
|
| 66 |
+
logger.info("β
Model CPU offloading enabled for memory optimization")
|
| 67 |
+
except:
|
| 68 |
+
logger.info("βΉοΈ CPU offloading not available")
|
| 69 |
+
|
| 70 |
+
# Only enable sequential CPU offloading if model CPU offload fails
|
| 71 |
+
if self.device.type == "cuda" and not hasattr(self.pipeline, "enable_model_cpu_offload"):
|
| 72 |
self.pipeline.enable_sequential_cpu_offload()
|
| 73 |
+
|
| 74 |
+
if self.device.type == "cuda":
|
| 75 |
logger.info(f"β
Stability AI SDXL loaded on GPU: {torch.cuda.get_device_name(0)}")
|
| 76 |
else:
|
|
|
|
| 77 |
logger.info("β
Stability AI SDXL loaded on CPU")
|
| 78 |
|
| 79 |
except Exception as e:
|
|
|
|
| 87 |
model_id,
|
| 88 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
| 89 |
safety_checker=None,
|
| 90 |
+
requires_safety_checker=False,
|
| 91 |
+
cache_dir=cache_dir,
|
| 92 |
+
resume_download=True
|
| 93 |
)
|
| 94 |
|
| 95 |
self.pipeline.to(self.device)
|
|
|
|
| 97 |
if hasattr(self.pipeline, "enable_attention_slicing"):
|
| 98 |
self.pipeline.enable_attention_slicing()
|
| 99 |
|
| 100 |
+
if hasattr(self.pipeline, "enable_xformers_memory_efficient_attention"):
|
| 101 |
+
try:
|
| 102 |
+
self.pipeline.enable_xformers_memory_efficient_attention()
|
| 103 |
+
except:
|
| 104 |
+
pass
|
| 105 |
+
|
| 106 |
if self.device.type == "cuda":
|
| 107 |
+
if hasattr(self.pipeline, "enable_model_cpu_offload"):
|
| 108 |
+
self.pipeline.enable_model_cpu_offload()
|
| 109 |
+
else:
|
| 110 |
+
self.pipeline.enable_sequential_cpu_offload()
|
| 111 |
logger.info(f"β
Fallback SD v1.5 loaded on GPU: {torch.cuda.get_device_name(0)}")
|
| 112 |
else:
|
| 113 |
logger.info("β
Fallback SD v1.5 loaded on CPU")
|
preload_models.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Pre-download models for faster startup
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
def preload_models():
|
| 8 |
+
"""Pre-download all required models"""
|
| 9 |
+
try:
|
| 10 |
+
print("π Pre-downloading Stability AI SDXL model...")
|
| 11 |
+
|
| 12 |
+
from diffusers import StableDiffusionPipeline
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
# Set cache directory
|
| 16 |
+
cache_dir = os.environ.get('HF_HOME', '/app/model_cache')
|
| 17 |
+
|
| 18 |
+
# Download SDXL model
|
| 19 |
+
try:
|
| 20 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 21 |
+
'stabilityai/stable-diffusion-xl-base-1.0',
|
| 22 |
+
torch_dtype=torch.float32,
|
| 23 |
+
safety_checker=None,
|
| 24 |
+
requires_safety_checker=False,
|
| 25 |
+
cache_dir=cache_dir
|
| 26 |
+
)
|
| 27 |
+
print("β
SDXL model downloaded successfully")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"β οΈ SDXL download failed, downloading fallback: {e}")
|
| 30 |
+
# Download fallback model
|
| 31 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 32 |
+
'runwayml/stable-diffusion-v1-5',
|
| 33 |
+
torch_dtype=torch.float32,
|
| 34 |
+
safety_checker=None,
|
| 35 |
+
requires_safety_checker=False,
|
| 36 |
+
cache_dir=cache_dir
|
| 37 |
+
)
|
| 38 |
+
print("β
SD v1.5 fallback model downloaded successfully")
|
| 39 |
+
|
| 40 |
+
# Also pre-download depth estimation model
|
| 41 |
+
print("π Pre-downloading depth estimation model...")
|
| 42 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 43 |
+
|
| 44 |
+
DPTImageProcessor.from_pretrained('Intel/dpt-beit-large-512', cache_dir=cache_dir)
|
| 45 |
+
DPTForDepthEstimation.from_pretrained('Intel/dpt-beit-large-512', cache_dir=cache_dir)
|
| 46 |
+
print("β
Depth estimation model downloaded successfully")
|
| 47 |
+
|
| 48 |
+
print("π All models pre-loaded successfully!")
|
| 49 |
+
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"β Error pre-loading models: {e}")
|
| 52 |
+
sys.exit(1)
|
| 53 |
+
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
preload_models()
|