Spaces:
Paused
Paused
File size: 36,181 Bytes
292197f 8c5f108 1c3baf1 292197f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
import numpy as np
import torch
from training.test_helpers import generate_class_prototypes
from training.utils import move_to_device
import time
import os
import glob
import re
MODELS_SAVE_DIR = "training/saved_models/newclip_mega8"
def train_or_load_model(model, load_network=True, retrain_model=False, specific_model_name=None, optimizer=None, criterion=None, train_dataloader=None, device=None, num_epochs=1, batch_print_interval=5, val_dataloader=None, validation_interval=20, model_name="fused_feature_model.pth", patience=5, min_delta=0.05, train_type="standard"):
save_dir = os.path.dirname(model_name) if os.path.dirname(model_name) else MODELS_SAVE_DIR
os.makedirs(save_dir, exist_ok=True)
latest_path = None
# 1. Check for a specific checkpoint name provided by the user
if specific_model_name:
latest_path = os.path.join(save_dir, specific_model_name)
if not os.path.exists(latest_path):
print(f"Warning: Specific checkpoint file not found at: {latest_path}. Skipping model load.")
latest_path = None # Do not attempt to load if path is invalid
# 2. If no specific name was provided or it was invalid, look for the latest checkpoint
if latest_path is None:
base_filename = os.path.basename(model_name)
max_num, latest_path = get_latest_checkpoint_info(save_dir, base_filename)
# --- Loading model ---
if load_network and latest_path:
try:
print(f"Attempting to load latest model and prototypes: {latest_path}")
checkpoint = torch.load(latest_path, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
total_batches_processed = checkpoint.get('total_batches_processed', None)
min_validation_loss = checkpoint.get('min_validation_loss', None)
print(f"Model with min validation loss {min_validation_loss} loaded")
if not retrain_model:
model.eval()
if 'prototype_tensor' in checkpoint and 'class_ids' in checkpoint:
prototype_tensor = checkpoint['prototype_tensor']
class_ids = checkpoint['class_ids']
print(f"Model and Prototypes successfully loaded from {latest_path}")
return model, prototype_tensor, class_ids, total_batches_processed, min_validation_loss
else:
print(f"Model state loaded successfully from {latest_path}, but **Prototypes are missing**. Generating prototypes now.")
prototype_tensor, class_ids = generate_class_prototypes(model, train_dataloader, device)
torch.save({
'model_state_dict': model.state_dict(),
'prototype_tensor': prototype_tensor,
'class_ids': class_ids,
'total_batches_processed': total_batches_processed,
"id_to_tag": train_dataloader.dataset.id_to_tag,
}, latest_path)
print(f"Prototypes generated and saved to {latest_path}")
return model, prototype_tensor, class_ids, total_batches_processed, min_validation_loss
except Exception as e:
print(f"Error loading model from {latest_path}: {e}")
print("Proceeding to train from scratch.")
# --- Training ---
print(f"Training from scratch (or resuming failed load).")
if train_type == "standard":
total_batches_processed, min_validation_loss = train_model(
model,
optimizer,
criterion,
train_dataloader,
device,
num_epochs=num_epochs,
batch_print_interval=batch_print_interval,
val_dataloader=val_dataloader,
validation_interval=validation_interval,
patience=patience,
min_delta=min_delta
)
elif train_type == "hardmining":
total_batches_processed, min_validation_loss = train_model_hard_mining(
model,
optimizer,
criterion,
train_dataloader,
device,
num_epochs=num_epochs,
batch_print_interval=batch_print_interval,
val_dataloader=val_dataloader,
validation_interval=validation_interval,
patience=patience,
min_delta=min_delta
)
elif train_type == "curriculum":
total_batches_processed, min_validation_loss = train_model_with_curriculum(
model,
optimizer,
criterion,
train_dataloader,
device,
num_epochs=num_epochs,
batch_print_interval=batch_print_interval,
val_dataloader=val_dataloader,
validation_interval=validation_interval,
patience=patience,
min_delta=min_delta
)
# --- Saving ---
next_num = max_num + 1
new_filename = f"{next_num}_{base_filename}"
save_path = os.path.join(save_dir, new_filename)
print(f"Min Validation Loss after training: {min_validation_loss}")
torch.save({
'model_state_dict': model.state_dict(),
"total_batches_processed": total_batches_processed,
"min_validation_loss": min_validation_loss
}, save_path)
print(f"Model saved (before prototypes) to {save_path}")
prototype_tensor, class_ids = generate_class_prototypes(model, train_dataloader, device)
torch.save({
'model_state_dict': model.state_dict(),
'prototype_tensor': prototype_tensor,
'class_ids': class_ids,
'total_batches_processed': total_batches_processed,
'min_validation_loss': min_validation_loss,
"id_to_tag": train_dataloader.dataset.id_to_tag,
}, save_path)
print(f"Model and Prototypes saved to {save_path}")
return model, prototype_tensor, class_ids, total_batches_processed, min_validation_loss
def train_model(model, optimizer, criterion, train_dataloader, device, num_epochs=1, batch_print_interval=5, val_dataloader=None, validation_interval=20, patience=5, min_delta=0.05):
early_stopper = EarlyStopper(patience=patience, min_delta=min_delta)
running_loss = 0.0
running_time = 0.0
total_batches_processed = 0
model.train()
for epoch in range(num_epochs):
start_time = time.time()
for i, batch in enumerate(train_dataloader):
batch_idx = i + 1
total_batches_processed += 1
batch = move_to_device(batch, device)
A_anchor = batch['anchor']
A_clip = A_anchor.get('clip')
A_seg = A_anchor.get('segformer')
A_dpt = A_anchor.get('dpt')
A_midas = A_anchor.get('midas')
# --- Safe extraction for Positive (P) ---
P_positive = batch['positive']
P_clip = P_positive.get('clip')
P_seg = P_positive.get('segformer')
P_dpt = P_positive.get('dpt')
P_midas = P_positive.get('midas')
# --- Safe extraction for Negative (N) ---
N_negative = batch['negative']
N_clip = N_negative.get('clip')
N_seg = N_negative.get('segformer')
N_dpt = N_negative.get('dpt')
N_midas = N_negative.get('midas')
if A_clip.device.type != 'cuda' or next(model.parameters()).device.type != 'cuda':
print("\n*** CRITICAL DEVICE SWITCH DETECTED ***")
print(f"Tensor is on {A_clip.device.type}. Training speed will be severely impacted.")
anchor_embed = model(A_clip, A_seg, A_dpt, A_midas)
positive_embed = model(P_clip, P_seg, P_dpt, P_midas)
negative_embed = model(N_clip, N_seg, N_dpt, N_midas)
loss = criterion(anchor_embed, positive_embed, negative_embed)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % batch_print_interval == 0:
avg_loss = running_loss / batch_print_interval
elapsed_time = time.time() - start_time
print(f'Epoch [{epoch+1}/{num_epochs}], '
f'Batch [{batch_idx}/{len(train_dataloader)}], '
f'Loss: {avg_loss:.4f}, '
f'Time/5 Batches: {elapsed_time:.2f}s')
running_loss = 0.0
running_time += elapsed_time
start_time = time.time()
if val_dataloader is not None and batch_idx % validation_interval == 0:
val_loss, num_val_batches = validate_model_mining(
model, criterion, val_dataloader, device
)
print(f"[Validation @ Batch {batch_idx}] Checked {num_val_batches} Val Batches. Loss: {val_loss:.4f}\n")
if early_stopper.early_stop(val_loss, model):
print(f"\n*** Early stopping triggered! ***")
print(f"Validation loss has not improved for {early_stopper.patience} validation checks.")
# Load the best weights before exiting
if early_stopper.best_model_state is not None:
model.load_state_dict(early_stopper.best_model_state)
print("Restored best model weights.")
return total_batches_processed, early_stopper.min_validation_loss
model.train()
start_time = time.time()
if batch_idx % validation_interval == 0:
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"--- Epoch {epoch+1} finished. ---")
print(f"Total time for epoch: {running_time:.2f}s")
if early_stopper.best_model_state is not None:
model.load_state_dict(early_stopper.best_model_state)
print("Training finished. Restored best model weights based on validation loss.")
return total_batches_processed, early_stopper.min_validation_loss
def validate_model(model, criterion, val_dataloader, device, batches_to_check=None):
"""
Evaluates the model on the validation dataset for a specified number of batches.
If batches_to_check is None, it runs over the entire val_dataloader.
"""
model.eval()
total_val_loss = 0.0
num_batches = 0
start_time = time.time()
with torch.no_grad():
for batch_idx, batch in enumerate(val_dataloader):
if batches_to_check is not None and batch_idx >= batches_to_check:
break
batch = move_to_device(batch, device)
A_anchor = batch['anchor']
A_clip = A_anchor.get('clip')
A_seg = A_anchor.get('segformer')
A_dpt = A_anchor.get('dpt')
A_midas = A_anchor.get('midas')
# --- Safe extraction for Positive (P) ---
P_positive = batch['positive']
P_clip = P_positive.get('clip')
P_seg = P_positive.get('segformer')
P_dpt = P_positive.get('dpt')
P_midas = P_positive.get('midas')
# --- Safe extraction for Negative (N) ---
N_negative = batch['negative']
N_clip = N_negative.get('clip')
N_seg = N_negative.get('segformer')
N_dpt = N_negative.get('dpt')
N_midas = N_negative.get('midas')
anchor_embed = model(A_clip, A_seg, A_dpt, A_midas)
positive_embed = model(P_clip, P_seg, P_dpt, P_midas)
negative_embed = model(N_clip, N_seg, N_dpt, N_midas)
loss = criterion(anchor_embed, positive_embed, negative_embed)
total_val_loss += loss.item()
num_batches += 1
end_time = time.time()
validation_time = end_time - start_time
print(f"Validation took {validation_time:.2f} seconds.")
avg_val_loss = total_val_loss / num_batches if num_batches > 0 else 0.0
return avg_val_loss, num_batches
def get_latest_checkpoint_info(save_dir, base_filename):
search_pattern = os.path.join(save_dir, f"*_{base_filename}")
existing_files = glob.glob(search_pattern)
max_num = 0
latest_path = None
pattern = re.compile(r'^(\d+)_')
for file in existing_files:
name = os.path.basename(file)
match = pattern.match(name)
if match:
current_num = int(match.group(1))
if current_num > max_num:
max_num = current_num
latest_path = file
return max_num, latest_path
class EarlyStopper:
"""
Early stopping to stop training when the validation loss does not improve
after a given patience.
"""
def __init__(self, patience=5, min_delta=0):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.min_validation_loss = np.inf
self.best_model_state = None
def early_stop(self, validation_loss, model):
"""
Returns True if early stopping criteria are met.
Stores the best model state if the current loss is an improvement.
"""
if validation_loss < self.min_validation_loss - self.min_delta:
self.min_validation_loss = validation_loss
print(f"New minimum validation loss: {self.min_validation_loss:.4f}. Saving best model state.")
self.counter = 0
self.best_model_state = model.state_dict()
elif validation_loss > self.min_validation_loss + self.min_delta:
self.counter += 1
if self.counter >= self.patience:
return True
return False
def batch_hard_mining(embeddings, labels, margin):
"""
Implements BatchHard Triplet Mining. Finds the hardest positive and negative
for every anchor in the batch.
"""
# Calculate all pairwise distances (Euclidean)
pairwise_dist = torch.cdist(embeddings, embeddings, p=2.0)
# Get masks
# labels_equal[i, j] is True if labels[i] == labels[j]
labels_equal = labels.unsqueeze(0) == labels.unsqueeze(1)
# 1. Hardest Positive (P_h): Max distance among positives
mask_anchor_positive = labels_equal.triu(diagonal=1) # Upper triangle, exclude diagonal (A=P)
# Set non-positives to a very small number (or 0) so max() finds the hardest positive
max_dist = pairwise_dist.max()
dist_positive = pairwise_dist * mask_anchor_positive.float()
# Find the max (hardest) positive distance for each row (Anchor)
# We set non-positive distances to a small value so they don't affect the max
dist_positive[mask_anchor_positive.logical_not()] = 0
# Find the hardest positive distance for each anchor (row)
# This requires looking across all positive pairs that include that anchor.
# It's computationally simpler to find the max distance for all P in the batch
# for each A (row).
# Max distance to a positive for each Anchor (row)
dist_ap, _ = torch.max(dist_positive, dim=1)
# 2. Hardest Negative (N_h): Min distance among negatives
mask_anchor_negative = labels_equal.logical_not()
# Set positives and diagonal to a very large number (inf) so min() finds the hardest negative
dist_negative = pairwise_dist + max_dist * (1 - mask_anchor_negative.float())
# Find the min (hardest) negative distance for each Anchor (row)
dist_an, _ = torch.min(dist_negative, dim=1)
# 3. Compute Triplet Loss on the mined triplets
# Loss: max(0, D_ap - D_an + margin)
loss_triplet = torch.relu(dist_ap - dist_an + margin)
# Return the average non-zero loss
if loss_triplet.numel() == 0:
return torch.tensor(0.0, device=embeddings.device, requires_grad=True)
# Only average over the triplets that contribute to the loss (loss > 0)
return loss_triplet.mean()
def batch_semi_hard_mining(embeddings, labels, margin):
"""
Implements Batch Semi-Hard Triplet Mining. Finds the hardest *violating* positive and the negative that is *outside* the margin but *closer* than the hardest negative (or the one that is closest to d(a,p)) for
every anchor in the batch.
A more robust way is to select the negative that violates the margin but
is closest to d(a,p), or simply select the hardest negative among those
that satisfy the semi-hard condition: d(a,p) < d(a,n) < d(a,p) + margin.
This implementation will strictly follow the original formulation:
1. Hardest Positive (P_h): Max distance among positives (d_ap).
2. Semi-Hard Negative (N_sh): Negative distance d_an such that
d_ap < d_an, but d_an < d_ap + margin.
If multiple satisfy this, we take the one closest to d_ap (the "hardest" semi-hard).
"""
# Calculate all pairwise distances (Euclidean)
pairwise_dist = torch.cdist(embeddings, embeddings, p=2.0)
# Get masks
# labels_equal[i, j] is True if labels[i] == labels[j]
labels_equal = labels.unsqueeze(0) == labels.unsqueeze(1)
# --- 1. Hardest Positive (P_h) ---
mask_anchor_positive = labels_equal.triu(diagonal=1)
# Set non-positives to 0 (since dists are positive, 0 won't be max)
dist_positive = pairwise_dist * mask_anchor_positive.float()
dist_positive[mask_anchor_positive.logical_not()] = 0
# Max distance to a positive for each Anchor (row)
dist_ap, _ = torch.max(dist_positive, dim=1)
# --- 2. Semi-Hard Negative (N_sh) ---
mask_anchor_negative = labels_equal.logical_not()
# Ensure d(a,n) > d(a,p) (Hardness condition)
# dist_ap is (B), expand to (B, B)
dist_ap_expanded = dist_ap.unsqueeze(1)
# Condition 1: d(a,n) > d(a,p)
mask_positive_violating = pairwise_dist > dist_ap_expanded
# Condition 2: d(a,n) < d(a,p) + margin (Semi-Hard condition)
mask_margin_satisfying = pairwise_dist < dist_ap_expanded + margin
# The Semi-Hard Negative Mask:
# Must be a negative, must be harder than the positive, and must satisfy the margin.
mask_semi_hard = mask_anchor_negative & mask_positive_violating & mask_margin_satisfying
# If no semi-hard negative exists for an anchor, we must find a valid substitute
# to avoid a zero-distance result, which could lead to loss=0 inappropriately.
# Create a distance matrix for MIN operation:
# 1. Start with the original pairwise_dist.
dist_negative = pairwise_dist.clone()
# 2. For non-semi-hard triplets, set the distance to a large value (Max + margin)
# so the torch.min() operation will choose a semi-hard one, if it exists.
# If *no* semi-hard negative exists for an anchor, we want to choose the
# hardest negative that *violates* the margin (i.e., the hardest negative).
# Temporarily set non-negatives to a large number
dist_negative[mask_anchor_negative.logical_not()] = 1e9
# The distance to minimize is: d(a,n) - d(a,p)
# We want the negative that is closest to d(a,p) but still satisfies the semi-hard condition.
# We will choose the hardest *non-violating* negative that is still a negative (i.e., d(a,n) > d(a,p))
# If a semi-hard negative exists, its mask is True.
# If a semi-hard negative *doesn't* exist, the common practice is to fall back to the
# hardest negative (which would violate the margin $d(a,n) < d(a,p)+\alpha$).
# Use the Semi-Hard Mask to define the relevant distances
dist_semi_hard = pairwise_dist.clone()
dist_semi_hard[mask_semi_hard.logical_not()] = 1e9 # Non-semi-hard dists are huge
# Find the min distance among the semi-hard negatives for each Anchor (row)
dist_an_semi_hard, _ = torch.min(dist_semi_hard, dim=1)
# Handle Anchors with NO Semi-Hard Negative:
# If the min distance is still 1e9, it means no semi-hard negative was found.
# In this case, we fall back to the HARDEST negative (closest d(a,n) > d(a,p) but d(a,n) < d(a,p)+margin is NOT met).
# Mask for anchors that found no semi-hard negative (distance is 1e9)
mask_no_semi_hard = dist_an_semi_hard == 1e9
# For those anchors, fall back to the hardest negative (the original Batch Hard negative)
if mask_no_semi_hard.any():
# Mask for all Negatives (Hardest Negative, d(a,n) < d(a,p) + margin is not required)
dist_all_negatives = pairwise_dist.clone()
dist_all_negatives[mask_anchor_negative.logical_not()] = 1e9
# Find the actual hardest negative for all anchors
dist_an_hard, _ = torch.min(dist_all_negatives, dim=1)
# Replace the 1e9 with the actual hardest negative distance
dist_an_semi_hard[mask_no_semi_hard] = dist_an_hard[mask_no_semi_hard]
dist_an = dist_an_semi_hard # Final negative distance to use
# --- 3. Compute Triplet Loss on the mined triplets ---
# Loss: max(0, D_ap - D_an + margin)
loss_triplet = torch.relu(dist_ap - dist_an + margin)
# Only average over the triplets that contribute to the loss (loss > 0)
# Note: We must check for at least one positive triplet being present in the batch
if loss_triplet.numel() == 0 or dist_ap.sum() == 0:
return torch.tensor(0.0, device=embeddings.device, requires_grad=True)
# Note: If we fall back to the hardest negative, the loss contribution might be 0
# (if d_an > d_ap + margin), but we still include it in the average (a common implementation choice).
# Since we are using the `torch.relu` here, the final loss will only be averaged over *all* anchors
# for which the loss calculation is > 0.
# Final check: only average over anchors that actually have a hard positive (dist_ap > 0)
# The most common implementation just uses the mean over the entire batch, which is simpler and less prone to edge cases.
return loss_triplet.mean()
def validate_model_mining(model, criterion, val_dataloader, device):
"""
Calculates validation loss using Online Hard Mining (BatchHard).
Args:
model: The FusedFeatureModel.
criterion: The loss criterion (used primarily to extract the margin).
val_dataloader: DataLoader using the MultiModalDataset.
device: 'cuda' or 'cpu'.
Returns:
(float, int): Average validation loss and number of batches checked.
"""
model.eval()
total_val_loss = 0.0
num_val_batches = 0
# CRITICAL: Extract the margin used in the criterion
# Assuming criterion is torch.nn.TripletMarginLoss
# MARGIN = criterion.margin
with torch.no_grad():
for batch in val_dataloader:
# Move batch to device (assuming move_to_device is defined)
# You must ensure the move_to_device helper moves nested dicts correctly
batch = move_to_device(batch, device)
inputs = batch['anchor']
labels = batch['y'] # True class labels (Shape: Batch Size)
# 1. Forward Pass: Compute all Embeddings in the batch
embeddings = model(**inputs)
# 2. Loss Calculation: Online Hard Mining Loss
# The loss is computed only on the hardest triplets found in the batch.
# loss = batch_semi_hard_mining(embeddings, labels, MARGIN)
loss = criterion(embeddings, labels)
total_val_loss += loss.item()
num_val_batches += 1
if num_val_batches == 0:
return 0.0, 0
avg_val_loss = total_val_loss / num_val_batches
return avg_val_loss, num_val_batches
# --- REVISED TRAINING LOOP ---
def train_model_hard_mining(model, optimizer, criterion, train_dataloader, device, num_epochs=1, batch_print_interval=5, val_dataloader=None, validation_interval=20, patience=5, min_delta=0.05):
# Extract margin from criterion (assuming it's TripletMarginLoss)
# MARGIN = criterion.margin
early_stopper = EarlyStopper(patience=patience, min_delta=min_delta)
running_loss = 0.0
running_time = 0.0
total_batches_processed = 0
model.train()
for epoch in range(num_epochs):
start_time = time.time()
for i, batch in enumerate(train_dataloader):
batch_idx = i + 1
total_batches_processed += 1
batch = move_to_device(batch, device)
inputs = batch['anchor']
labels = batch['y'] # True class labels (Shape: Batch Size)
# --- 1. Compute all Embeddings in the batch ---
# Note: We need to pass the tensors out of the dict structure for the model call
# This is complex when inputs are dicts. We'll extract only the required tensors:
# The model call needs to be simplified to handle the batch of inputs
embeddings = model(**inputs) # Embeddings shape: (Batch Size, Embedding Dim)
# --- 2. Online Hard Mining ---
# Use the BatchHard miner to find the hardest triplets and calculate loss
# loss = batch_semi_hard_mining(embeddings, labels, MARGIN)
loss = criterion(embeddings, labels)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % batch_print_interval == 0:
avg_loss = running_loss / batch_print_interval
elapsed_time = time.time() - start_time
print(f'Epoch [{epoch+1}/{num_epochs}], '
f'Batch [{batch_idx}/{len(train_dataloader)}], '
f'Online Hard Mining Loss: {avg_loss:.4f}, '
f'Time/{batch_print_interval} Batches: {elapsed_time:.2f}s')
running_loss = 0.0
running_time += elapsed_time
start_time = time.time()
if val_dataloader is not None and batch_idx % validation_interval == 0:
val_loss, num_val_batches = validate_model_mining(
model, criterion, val_dataloader, device
)
print(f"[Validation @ Batch {batch_idx}] Checked {num_val_batches} Val Batches. Loss: {val_loss:.4f}\n")
if early_stopper.early_stop(val_loss, model):
print(f"\n*** Early stopping triggered! ***")
if early_stopper.best_model_state is not None:
model.load_state_dict(early_stopper.best_model_state)
print("Restored best model weights.")
return total_batches_processed, early_stopper.min_validation_loss
model.train()
start_time = time.time()
if batch_idx % validation_interval == 0 and torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"--- Epoch {epoch+1} finished. ---")
print(f"Total time for epoch: {running_time:.2f}s")
if early_stopper.best_model_state is not None:
model.load_state_dict(early_stopper.best_model_state)
print("Training finished. Restored best model weights based on validation loss.")
return total_batches_processed, early_stopper.min_validation_loss
def train_model_with_curriculum(model, optimizer, criterion, train_dataloader, device, num_epochs=1, batch_print_interval=5, val_dataloader=None, validation_interval=20, patience=5, min_delta=0.05):
# CRITICAL: Extract the margin for Batch Hard Mining
# Assuming criterion is torch.nn.TripletMarginLoss
# MARGIN = criterion.margin
early_stopper = EarlyStopper(patience=patience, min_delta=min_delta)
FINE_TUNE_LR_FACTOR = 0.1 # e.g., drop LR by 10x
CLIP_LAYERS_TO_UNFREEZE = 1
SEGFORMER_LAYERS_TO_UNFREEZE = 1
DPT_LAYERS_TO_UNFREEZE = 0
MIDAS_LAYERS_TO_UNFREEZE = 0
# You may add other backbones here, e.g., 'segformer': 2, 'dpt': 1
BACKBONES_TO_UNFREEZE = {'clip': CLIP_LAYERS_TO_UNFREEZE}
# Get the current base LR
initial_lr = optimizer.param_groups[0]['lr']
running_loss = 0.0
total_batches_processed = 0
model.train()
for epoch in range(num_epochs):
start_time = time.time()
# Determine the mining strategy for the current epoch
# Epoch 1 (index 0) uses standard pre-sampled triplets (Random/Semi-hard)
# Epoch 2+ (index 1+) uses Online Batch Hard Mining
is_hard_mining_epoch = epoch >= 1
if is_hard_mining_epoch and epoch == 1:
print("\n--- Switching to Hard Mining Mode for Training Dataset and loading Best Model from Triplet Loss ---")
train_dataloader.dataset.hard_mining_mode = True
model.load_state_dict(early_stopper.best_model_state)
if epoch == 2:
print("\n--- PHASE 2: Starting Fine-Tuning (Epoch 3). Unfreezing last layers and dropping LR. ---")
# 1. Unfreeze the last N layers of selected backbones
for backbone_name, n_layers in BACKBONES_TO_UNFREEZE.items():
# The 'unfreeze_last_n_layers' function is assumed to be part of the model
model.unfreeze_last_n_layers(backbone_name, n=n_layers)
# 2. Drop the learning rate for stable fine-tuning
new_lr = initial_lr * FINE_TUNE_LR_FACTOR
adjust_learning_rate(optimizer, new_lr) # You need to define this helper function
print(f"Learning Rate adjusted for fine-tuning: {initial_lr:.6f} -> {new_lr:.6f}")
mining_strategy = "Hard Mining" if is_hard_mining_epoch else "Standard Triplet Loss"
if epoch >= 2:
mining_strategy += " + Fine-Tuning"
print(f"\n--- Epoch {epoch+1}/{num_epochs} | Using {mining_strategy} ---")
for i, batch in enumerate(train_dataloader):
batch_idx = i + 1
total_batches_processed += 1
batch = move_to_device(batch, device)
if not is_hard_mining_epoch:
# --- STANDARD TRIPLET LOSS (Epoch 1) ---
# Input structure is Anchor/Positive/Negative dicts
A_anchor = batch['anchor']
P_positive = batch['positive']
N_negative = batch['negative']
# Extract multimodal inputs (A_clip, A_seg, etc. from A_anchor)
A_clip, A_seg, A_dpt, A_midas = (A_anchor.get('clip'), A_anchor.get('segformer'), A_anchor.get('dpt'), A_anchor.get('midas'))
P_clip, P_seg, P_dpt, P_midas = (P_positive.get('clip'), P_positive.get('segformer'), P_positive.get('dpt'), P_positive.get('midas'))
N_clip, N_seg, N_dpt, N_midas = (N_negative.get('clip'), N_negative.get('segformer'), N_negative.get('dpt'), N_negative.get('midas'))
anchor_embed = model(A_clip, A_seg, A_dpt, A_midas)
positive_embed = model(P_clip, P_seg, P_dpt, P_midas)
negative_embed = model(N_clip, N_seg, N_dpt, N_midas)
loss = criterion(anchor_embed, positive_embed, negative_embed)
else:
# --- ONLINE BATCH HARD MINING (Epoch 2+) ---
# Input structure is 'anchor' inputs and 'y' labels
inputs = batch['anchor']
labels = batch['y'] # True class labels
# Extract inputs for the model's forward pass
clip_inputs = inputs.get('clip')
segformer_inputs = inputs.get('segformer')
dpt_inputs = inputs.get('dpt')
midas_inputs = inputs.get('midas')
# Compute all Embeddings in the batch
embeddings = model(clip_inputs, segformer_inputs, dpt_inputs, midas_inputs)
# Use the BatchHard miner to find the hardest triplets and calculate loss
# loss = batch_hard_mining(embeddings, labels, MARGIN)
loss = criterion(embeddings, labels)
# --- BACKPROPAGATION ---
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
# --- PRINTING ---
if batch_idx % batch_print_interval == 0:
avg_loss = running_loss / batch_print_interval
elapsed_time = time.time() - start_time
print(f'Epoch [{epoch+1}/{num_epochs}], '
f'Batch [{batch_idx}/{len(train_dataloader)}], '
f'{mining_strategy} Loss: {avg_loss:.4f}, '
f'Time/{batch_print_interval} Batches: {elapsed_time:.2f}s')
running_loss = 0.0
start_time = time.time()
# --- VALIDATION ---
if val_dataloader is not None and batch_idx % validation_interval == 0:
# **IMPORTANT:** Always use the more robust Hard Mining validation
# to get a real assessment of the embedding space's quality.
val_loss, num_val_batches = validate_model_mining(
model, criterion, val_dataloader, device
)
print(f"[Validation @ Batch {batch_idx}] Checked {num_val_batches} Val Batches. Loss: {val_loss:.4f}\n")
early_stopper.early_stop(val_loss, model)
if early_stopper.early_stop(val_loss, model):
print(f"\n*** Early stopping triggered! ***")
if early_stopper.best_model_state is not None:
model.load_state_dict(early_stopper.best_model_state)
print("Restored best model weights.")
return total_batches_processed, early_stopper.min_validation_loss
model.train()
start_time = time.time()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"--- Epoch {epoch+1} finished. ---")
if early_stopper.best_model_state is not None:
model.load_state_dict(early_stopper.best_model_state)
print("Training finished. Restored best model weights based on validation loss.")
return total_batches_processed, early_stopper.min_validation_loss
def adjust_learning_rate(optimizer, new_lr):
"""
Sets the learning rate for all parameter groups in the optimizer.
Args:
optimizer (torch.optim.Optimizer): The optimizer whose learning rate to adjust.
new_lr (float): The new learning rate value.
"""
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr |