File size: 25,343 Bytes
c3418e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
"""
Model Architecture for Speaker Profiling
Supports multiple encoders: WavLM, HuBERT, Wav2Vec2, Whisper, ECAPA-TDNN
Architecture: Encoder + Attentive Pooling + LayerNorm + Classification Heads
"""

import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import (
    WavLMModel,
    HubertModel,
    Wav2Vec2Model,
    WhisperModel,
    AutoConfig
)

# SpeechBrain ECAPA-TDNN support - lazy import to avoid torchaudio issues
SPEECHBRAIN_AVAILABLE = None  # Will be set on first use
EncoderClassifier = None  # Will be imported lazily

def _check_speechbrain():
    """Lazily check and import SpeechBrain"""
    global SPEECHBRAIN_AVAILABLE, EncoderClassifier
    if SPEECHBRAIN_AVAILABLE is None:
        try:
            from speechbrain.inference.speaker import EncoderClassifier as _EncoderClassifier
            EncoderClassifier = _EncoderClassifier
            SPEECHBRAIN_AVAILABLE = True
        except (ImportError, AttributeError) as e:
            SPEECHBRAIN_AVAILABLE = False
            logger.warning(f"SpeechBrain not available: {e}")
    return SPEECHBRAIN_AVAILABLE

logger = logging.getLogger("speaker_profiling")


# ECAPA-TDNN wrapper class for consistent interface
class ECAPATDNNEncoder(nn.Module):
    """
    Wrapper for SpeechBrain ECAPA-TDNN encoder.
    
    ECAPA-TDNN outputs fixed-size embeddings (192 or 512 dim) instead of 
    frame-level features like WavLM/HuBERT. This wrapper handles the difference.
    
    Supported models:
        - speechbrain/spkrec-ecapa-voxceleb: 192-dim embeddings
        - speechbrain/spkrec-xvect-voxceleb: 512-dim embeddings (x-vector)
    """
    
    def __init__(self, model_name: str = "speechbrain/spkrec-ecapa-voxceleb"):
        super().__init__()
        
        # Lazy import SpeechBrain
        if not _check_speechbrain():
            raise ImportError(
                "SpeechBrain is required for ECAPA-TDNN. "
                "Install with: pip install speechbrain"
            )
        
        self.model_name = model_name
        
        # Detect if CUDA is available
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        self.encoder = EncoderClassifier.from_hparams(
            source=model_name,
            savedir=f"pretrained_models/{model_name.split('/')[-1]}",
            run_opts={"device": device}
        )
        
        # Force float32 for all encoder parameters
        self.encoder.mods.float()
        
        # Determine embedding size
        if "ecapa" in model_name.lower():
            self.embedding_size = 192
        elif "xvect" in model_name.lower():
            self.embedding_size = 512
        else:
            self.embedding_size = 192  # default
        
        # Config-like object for compatibility
        class Config:
            def __init__(self, hidden_size):
                self.hidden_size = hidden_size
        
        self.config = Config(self.embedding_size)
        
        # Track current device
        self._current_device = device
    
    def forward(self, input_values: torch.Tensor, attention_mask: torch.Tensor = None):
        """
        Extract embeddings from audio.
        
        Args:
            input_values: Audio waveform [B, T]
            attention_mask: Not used for ECAPA-TDNN
        
        Returns:
            Object with last_hidden_state attribute [B, 1, H]
        """
        # Get device from input
        device = input_values.device
        
        # Move encoder to same device as input if needed
        if str(device) != str(self._current_device):
            self.encoder.to(device)
            self.encoder.mods.float()  # Ensure float32 after move
            self._current_device = device
        
        # Ensure input is float32 and on correct device
        input_values = input_values.float().to(device)
        
        # SpeechBrain expects [B, T] audio at 16kHz
        # encode_batch handles feature extraction internally
        with torch.no_grad():
            # Set encoder to eval mode to handle BatchNorm properly
            self.encoder.eval()
            embeddings = self.encoder.encode_batch(input_values)  # [B, 1, H]
        
        # Ensure output is float32
        embeddings = embeddings.float()
        
        # Return object compatible with HuggingFace models
        class Output:
            def __init__(self, hidden_state):
                self.last_hidden_state = hidden_state
        
        return Output(embeddings)


# Encoder registry - maps model type to class and hidden size
ENCODER_REGISTRY = {
    # WavLM variants
    "microsoft/wavlm-base": {"class": WavLMModel, "hidden_size": 768},
    "microsoft/wavlm-base-plus": {"class": WavLMModel, "hidden_size": 768},
    "microsoft/wavlm-large": {"class": WavLMModel, "hidden_size": 1024},
    
    # HuBERT variants
    "facebook/hubert-base-ls960": {"class": HubertModel, "hidden_size": 768},
    "facebook/hubert-large-ls960-ft": {"class": HubertModel, "hidden_size": 1024},
    "facebook/hubert-xlarge-ls960-ft": {"class": HubertModel, "hidden_size": 1280},
    
    # Wav2Vec2 variants
    "facebook/wav2vec2-base": {"class": Wav2Vec2Model, "hidden_size": 768},
    "facebook/wav2vec2-base-960h": {"class": Wav2Vec2Model, "hidden_size": 768},
    "facebook/wav2vec2-large": {"class": Wav2Vec2Model, "hidden_size": 1024},
    "facebook/wav2vec2-large-960h": {"class": Wav2Vec2Model, "hidden_size": 1024},
    "facebook/wav2vec2-xls-r-300m": {"class": Wav2Vec2Model, "hidden_size": 1024},
    
    # Vietnamese Wav2Vec2 (VLSP2020)
    "nguyenvulebinh/wav2vec2-base-vi-vlsp2020": {"class": Wav2Vec2Model, "hidden_size": 768},
    
    # Whisper variants (encoder only)
    "openai/whisper-tiny": {"class": WhisperModel, "hidden_size": 384, "is_whisper": True},
    "openai/whisper-base": {"class": WhisperModel, "hidden_size": 512, "is_whisper": True},
    "openai/whisper-small": {"class": WhisperModel, "hidden_size": 768, "is_whisper": True},
    "openai/whisper-medium": {"class": WhisperModel, "hidden_size": 1024, "is_whisper": True},
    "openai/whisper-large": {"class": WhisperModel, "hidden_size": 1280, "is_whisper": True},
    "openai/whisper-large-v2": {"class": WhisperModel, "hidden_size": 1280, "is_whisper": True},
    "openai/whisper-large-v3": {"class": WhisperModel, "hidden_size": 1280, "is_whisper": True},
    
    # PhoWhisper - Vietnamese fine-tuned Whisper (VinAI)
    "vinai/PhoWhisper-tiny": {"class": WhisperModel, "hidden_size": 384, "is_whisper": True},
    "vinai/PhoWhisper-base": {"class": WhisperModel, "hidden_size": 512, "is_whisper": True},
    "vinai/PhoWhisper-small": {"class": WhisperModel, "hidden_size": 768, "is_whisper": True},
    "vinai/PhoWhisper-medium": {"class": WhisperModel, "hidden_size": 1024, "is_whisper": True},
    "vinai/PhoWhisper-large": {"class": WhisperModel, "hidden_size": 1280, "is_whisper": True},
    
    # ECAPA-TDNN (SpeechBrain)
    "speechbrain/spkrec-ecapa-voxceleb": {
        "class": ECAPATDNNEncoder, 
        "hidden_size": 192, 
        "is_ecapa": True
    },
    "speechbrain/spkrec-xvect-voxceleb": {
        "class": ECAPATDNNEncoder, 
        "hidden_size": 512, 
        "is_ecapa": True
    },
}


def get_encoder_info(model_name: str) -> dict:
    """Get encoder class and hidden size for a model name"""
    if model_name in ENCODER_REGISTRY:
        return ENCODER_REGISTRY[model_name]
    
    # Check for ECAPA-TDNN / SpeechBrain models
    # Note: We don't check SPEECHBRAIN_AVAILABLE here - the actual import
    # will happen lazily in ECAPATDNNEncoder.__init__() when the model is used
    if 'ecapa' in model_name.lower() or 'speechbrain' in model_name.lower():
        hidden_size = 512 if 'xvect' in model_name.lower() else 192
        return {"class": ECAPATDNNEncoder, "hidden_size": hidden_size, "is_ecapa": True}
    
    # Try to auto-detect from config
    try:
        config = AutoConfig.from_pretrained(model_name)
        hidden_size = getattr(config, 'hidden_size', 768)
        
        if 'wavlm' in model_name.lower():
            return {"class": WavLMModel, "hidden_size": hidden_size}
        elif 'hubert' in model_name.lower():
            return {"class": HubertModel, "hidden_size": hidden_size}
        elif 'wav2vec2' in model_name.lower():
            return {"class": Wav2Vec2Model, "hidden_size": hidden_size}
        elif 'whisper' in model_name.lower() or 'phowhisper' in model_name.lower():
            return {"class": WhisperModel, "hidden_size": hidden_size, "is_whisper": True}
        else:
            # Default to Wav2Vec2 architecture
            return {"class": Wav2Vec2Model, "hidden_size": hidden_size}
    except Exception as e:
        logger.warning(f"Could not auto-detect encoder for {model_name}: {e}")
        return {"class": WavLMModel, "hidden_size": 768}


class AttentivePooling(nn.Module):
    """
    Attention-based pooling for temporal aggregation
    
    Takes sequence of hidden states and produces a single vector
    by computing attention weights and performing weighted sum.
    """
    
    def __init__(self, hidden_size: int):
        super().__init__()
        self.attention = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.Tanh(),
            nn.Linear(hidden_size, 1, bias=False)
        )
    
    def forward(self, x: torch.Tensor, mask: torch.Tensor = None):
        """
        Args:
            x: Hidden states [B, T, H]
            mask: Attention mask [B, T]
        
        Returns:
            pooled: Pooled representation [B, H]
            attn_weights: Attention weights [B, T]
        """
        attn_weights = self.attention(x)  # [B, T, 1]
        
        if mask is not None:
            mask = mask.unsqueeze(-1)
            attn_weights = attn_weights.masked_fill(mask == 0, -1e9)
        
        attn_weights = F.softmax(attn_weights, dim=1)
        pooled = torch.sum(x * attn_weights, dim=1)
        
        return pooled, attn_weights.squeeze(-1)


class MultiTaskSpeakerModel(nn.Module):
    """
    Multi-task model for gender and dialect classification
    
    Architecture:
        Audio -> Encoder (WavLM/HuBERT/Wav2Vec2/Whisper/ECAPA-TDNN) -> Last Hidden [B,T,H]
                              |
                     Attentive Pooling [B,H] (skipped for ECAPA-TDNN)
                              |
                     Layer Normalization
                              |
                         Dropout(0.1)
                              |
              +---------------+---------------+
              |                               |
        Gender Head (2 layers)     Dialect Head (3 layers)
              |                               |
            [B,2]                           [B,3]
    
    Supported encoders:
        - WavLM: microsoft/wavlm-base-plus, microsoft/wavlm-large
        - HuBERT: facebook/hubert-base-ls960, facebook/hubert-large-ls960-ft
        - Wav2Vec2: facebook/wav2vec2-base, facebook/wav2vec2-large-960h
        - Whisper: openai/whisper-base, openai/whisper-small, openai/whisper-medium
        - ECAPA-TDNN: speechbrain/spkrec-ecapa-voxceleb (192-dim embeddings)
    
    Args:
        model_name: Pretrained encoder model name or path
        num_genders: Number of gender classes (default: 2)
        num_dialects: Number of dialect classes (default: 3)
        dropout: Dropout probability (default: 0.1)
        head_hidden_dim: Hidden dimension for classification heads (default: 256)
        freeze_encoder: Whether to freeze encoder (default: False)
        dialect_loss_weight: Weight for dialect loss in multi-task learning (default: 3.0)
    """
    
    def __init__(
        self, 
        model_name: str,
        num_genders: int = 2, 
        num_dialects: int = 3, 
        dropout: float = 0.1, 
        head_hidden_dim: int = 256,
        freeze_encoder: bool = False,
        dialect_loss_weight: float = 3.0
    ):
        super().__init__()
        
        self.model_name = model_name
        self.dialect_loss_weight = dialect_loss_weight
        
        # Get encoder info and load model
        encoder_info = get_encoder_info(model_name)
        encoder_class = encoder_info["class"]
        self.is_whisper = encoder_info.get("is_whisper", False)
        self.is_ecapa = encoder_info.get("is_ecapa", False)
        
        logger.info(f"Loading encoder: {model_name}")
        logger.info(f"Encoder class: {encoder_class.__name__}")
        
        # Load pretrained encoder
        if self.is_ecapa:
            # ECAPA-TDNN uses different loading mechanism
            self.encoder = encoder_class(model_name)
        else:
            self.encoder = encoder_class.from_pretrained(model_name)
        
        hidden_size = self.encoder.config.hidden_size
        self.hidden_size = hidden_size
        
        logger.info(f"Hidden size: {hidden_size}")
        
        # Optionally freeze encoder
        if freeze_encoder:
            for param in self.encoder.parameters():
                param.requires_grad = False
            logger.info("Encoder weights frozen")
        
        # Pooling and normalization (ECAPA-TDNN already outputs pooled embeddings)
        self.attentive_pooling = AttentivePooling(hidden_size)
        self.layer_norm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(dropout)
        
        # Gender classification head (2 layers)
        self.gender_head = nn.Sequential(
            nn.Linear(hidden_size, head_hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(head_hidden_dim, num_genders)
        )
        
        # Dialect classification head (3 layers - deeper for harder task)
        self.dialect_head = nn.Sequential(
            nn.Linear(hidden_size, head_hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(head_hidden_dim, head_hidden_dim // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(head_hidden_dim // 2, num_dialects)
        )
    
    def forward(
        self, 
        input_values: torch.Tensor = None,
        input_features: torch.Tensor = None,
        attention_mask: torch.Tensor = None,
        gender_labels: torch.Tensor = None, 
        dialect_labels: torch.Tensor = None
    ):
        """
        Forward pass - supports both raw audio and pre-extracted features
        
        Args:
            input_values: Audio waveform [B, T] (for raw audio mode)
            input_features: Pre-extracted features [B, T, H] or [B, 1, H] for ECAPA
            attention_mask: Attention mask [B, T]
            gender_labels: Gender labels [B] (optional, for training)
            dialect_labels: Dialect labels [B] (optional, for training)
        
        Returns:
            dict with keys:
                - loss: Combined loss (if labels provided)
                - gender_logits: Gender predictions [B, num_genders]
                - dialect_logits: Dialect predictions [B, num_dialects]
                - attention_weights: Attention weights from pooling [B, T] (None for ECAPA)
        """
        # Get hidden states from either raw audio or pre-extracted features
        if input_features is not None:
            # Use pre-extracted features directly
            hidden_states = input_features
        elif input_values is not None:
            # Extract features from encoder
            hidden_states = self._encode(input_values, attention_mask)
        else:
            raise ValueError("Either input_values or input_features must be provided")
        
        # Handle ECAPA-TDNN (outputs [B, 1, H] - already pooled embeddings)
        if self.is_ecapa or hidden_states.shape[1] == 1:
            # ECAPA-TDNN outputs already pooled embeddings
            pooled = hidden_states.squeeze(1)  # [B, H]
            attn_weights = None
        else:
            # Create proper attention mask for hidden states (encoder downsamples audio)
            # Hidden states have different sequence length than input audio
            if attention_mask is not None and hidden_states.shape[1] != attention_mask.shape[1]:
                # Create new mask based on hidden states length
                batch_size, seq_len, _ = hidden_states.shape
                pooled_mask = torch.ones(batch_size, seq_len, device=hidden_states.device)
            else:
                pooled_mask = attention_mask
            
            # Attentive pooling
            pooled, attn_weights = self.attentive_pooling(hidden_states, pooled_mask)
        
        # Normalization and dropout
        pooled = self.layer_norm(pooled)
        pooled = self.dropout(pooled)
        
        # Classification heads
        gender_logits = self.gender_head(pooled)
        dialect_logits = self.dialect_head(pooled)
        
        # Compute loss if labels provided
        loss = None
        if gender_labels is not None and dialect_labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            gender_loss = loss_fct(gender_logits, gender_labels)
            dialect_loss = loss_fct(dialect_logits, dialect_labels)
            loss = gender_loss + self.dialect_loss_weight * dialect_loss
        
        return {
            'loss': loss,
            'gender_logits': gender_logits,
            'dialect_logits': dialect_logits,
            'attention_weights': attn_weights
        }
    
    def _encode(
        self, 
        input_values: torch.Tensor, 
        attention_mask: torch.Tensor = None
    ) -> torch.Tensor:
        """
        Extract hidden states from encoder
        
        Args:
            input_values: Audio waveform [B, T]
            attention_mask: Attention mask [B, T]
        
        Returns:
            hidden_states: Hidden states [B, T, H] or [B, 1, H] for ECAPA-TDNN
        """
        if self.is_ecapa:
            # ECAPA-TDNN outputs fixed-size embeddings [B, 1, H]
            outputs = self.encoder(input_values, attention_mask)
            hidden_states = outputs.last_hidden_state
        elif self.is_whisper:
            # Whisper uses encoder-decoder, we only use encoder
            outputs = self.encoder.encoder(input_values)
            hidden_states = outputs.last_hidden_state
        else:
            # WavLM, HuBERT, Wav2Vec2
            outputs = self.encoder(input_values, attention_mask=attention_mask)
            hidden_states = outputs.last_hidden_state
        
        return hidden_states
    
    def get_embeddings(
        self, 
        input_values: torch.Tensor, 
        attention_mask: torch.Tensor = None
    ) -> torch.Tensor:
        """
        Extract speaker embeddings (pooled representations)
        
        Args:
            input_values: Audio waveform [B, T]
            attention_mask: Attention mask [B, T]
        
        Returns:
            embeddings: Speaker embeddings [B, H]
        """
        hidden_states = self._encode(input_values, attention_mask)
        
        if self.is_ecapa or hidden_states.shape[1] == 1:
            # ECAPA-TDNN already outputs pooled embeddings
            pooled = hidden_states.squeeze(1)
        else:
            pooled, _ = self.attentive_pooling(hidden_states, attention_mask)
        
        pooled = self.layer_norm(pooled)
        return pooled


class MultiTaskSpeakerModelFromConfig(MultiTaskSpeakerModel):
    """
    Multi-task model initialized from OmegaConf config
    
    Supports multiple encoders: WavLM, HuBERT, Wav2Vec2, Whisper
    Use this for inference with raw audio input.
    
    Usage:
        config = OmegaConf.load('configs/finetune.yaml')
        model = MultiTaskSpeakerModelFromConfig(config)
    """
    
    def __init__(self, config):
        model_config = config['model']
        
        super().__init__(
            model_name=model_config['name'],
            num_genders=model_config.get('num_genders', 2),
            num_dialects=model_config.get('num_dialects', 3),
            dropout=model_config.get('dropout', 0.1),
            head_hidden_dim=model_config.get('head_hidden_dim', 256),
            freeze_encoder=model_config.get('freeze_encoder', False),
            dialect_loss_weight=config.get('loss', {}).get('dialect_weight', 3.0)
        )
        
        logger.info(f"Architecture: {model_config['name']} + Attentive Pooling + LayerNorm")
        logger.info(f"Hidden size: {self.hidden_size}")
        logger.info(f"Head hidden dim: {model_config.get('head_hidden_dim', 256)}")
        logger.info(f"Dropout: {model_config.get('dropout', 0.1)}")


class ClassificationHeadModel(nn.Module):
    """
    Lightweight model with only classification heads (no encoder).
    
    Use this for training with pre-extracted features to save memory.
    Hidden_size depends on encoder: WavLM-base=768, WavLM-large=1024, etc.
    
    Usage:
        model = ClassificationHeadModel(config)
        output = model(input_features=features, gender_labels=y_gender, dialect_labels=y_dialect)
    """
    
    def __init__(
        self, 
        hidden_size: int = 768,
        num_genders: int = 2, 
        num_dialects: int = 3, 
        dropout: float = 0.1, 
        head_hidden_dim: int = 256,
        dialect_loss_weight: float = 3.0
    ):
        super().__init__()
        
        self.hidden_size = hidden_size
        self.dialect_loss_weight = dialect_loss_weight
        
        # Pooling and normalization
        self.attentive_pooling = AttentivePooling(hidden_size)
        self.layer_norm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(dropout)
        
        # Gender classification head (2 layers)
        self.gender_head = nn.Sequential(
            nn.Linear(hidden_size, head_hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(head_hidden_dim, num_genders)
        )
        
        # Dialect classification head (3 layers - deeper for harder task)
        self.dialect_head = nn.Sequential(
            nn.Linear(hidden_size, head_hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(head_hidden_dim, head_hidden_dim // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(head_hidden_dim // 2, num_dialects)
        )
        
        logger.info(f"ClassificationHeadModel initialized (hidden_size={hidden_size})")
    
    def forward(
        self, 
        input_features: torch.Tensor,
        attention_mask: torch.Tensor = None,
        gender_labels: torch.Tensor = None, 
        dialect_labels: torch.Tensor = None
    ):
        """
        Forward pass for pre-extracted features
        
        Args:
            input_features: Pre-extracted WavLM features [B, T, H]
            attention_mask: Attention mask [B, T]
            gender_labels: Gender labels [B] (optional, for training)
            dialect_labels: Dialect labels [B] (optional, for training)
        
        Returns:
            dict with keys:
                - loss: Combined loss (if labels provided)
                - gender_logits: Gender predictions [B, num_genders]
                - dialect_logits: Dialect predictions [B, num_dialects]
                - attention_weights: Attention weights from pooling [B, T]
        """
        # Attentive pooling
        pooled, attn_weights = self.attentive_pooling(input_features, attention_mask)
        
        # Normalization and dropout
        pooled = self.layer_norm(pooled)
        pooled = self.dropout(pooled)
        
        # Classification heads
        gender_logits = self.gender_head(pooled)
        dialect_logits = self.dialect_head(pooled)
        
        # Compute loss if labels provided
        loss = None
        if gender_labels is not None and dialect_labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            gender_loss = loss_fct(gender_logits, gender_labels)
            dialect_loss = loss_fct(dialect_logits, dialect_labels)
            loss = gender_loss + self.dialect_loss_weight * dialect_loss
        
        return {
            'loss': loss,
            'gender_logits': gender_logits,
            'dialect_logits': dialect_logits,
            'attention_weights': attn_weights
        }


class ClassificationHeadModelFromConfig(ClassificationHeadModel):
    """
    Lightweight classification model initialized from OmegaConf config.
    
    Use this for training with pre-extracted features.
    """
    
    def __init__(self, config):
        model_config = config['model']
        
        super().__init__(
            hidden_size=model_config.get('hidden_size', 768),  # WavLM base hidden size
            num_genders=model_config.get('num_genders', 2),
            num_dialects=model_config.get('num_dialects', 3),
            dropout=model_config.get('dropout', 0.1),
            head_hidden_dim=model_config.get('head_hidden_dim', 256),
            dialect_loss_weight=config.get('loss', {}).get('dialect_weight', 3.0)
        )
        
        logger.info("Architecture: Attentive Pooling + LayerNorm + Classification Heads")
        logger.info(f"Hidden size: {self.hidden_size}")
        logger.info(f"Head hidden dim: {model_config.get('head_hidden_dim', 256)}")
        logger.info(f"Dropout: {model_config.get('dropout', 0.1)}")