import streamlit as st from typing import List, Dict, Any, TypedDict, Optional, Tuple from dataclasses import dataclass from datetime import datetime import json import ipaddress import os try: import requests except Exception: requests = None # Optional libraries try: from duckduckgo_search import DDGS except Exception: DDGS = None try: from PyPDF2 import PdfReader except Exception: PdfReader = None try: import docx except Exception: docx = None try: import olefile except Exception: olefile = None try: from mutagen import File as MutagenFile except Exception: MutagenFile = None try: from rapidfuzz import fuzz except Exception: fuzz = None try: import exifread except Exception: exifread = None try: import networkx as nx except Exception: nx = None try: from pyvis.network import Network except Exception: Network = None try: from sentence_transformers import SentenceTransformer except Exception: SentenceTransformer = None try: from jinja2 import Template except Exception: Template = None # --------------------------- # Config & Styles # --------------------------- st.set_page_config(page_title="OSINT Investigator", layout="wide") HIDE_STREAMLIT_STYLE = """ """ st.markdown(HIDE_STREAMLIT_STYLE, unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) if st.session_state.get("settings", {}).get("light_mode"): st.markdown("""""", unsafe_allow_html=True) else: st.markdown("""""", unsafe_allow_html=True) # --------------------------- # Sidebar: Settings # --------------------------- def _get_settings() -> Dict[str, Any]: with st.sidebar: st.header("Settings") model = st.selectbox( "Advisor model (CPU-friendly)", [ "qwen2.5-1.5b-instruct", "phi-3-mini-4k-instruct", "gemma-2-2b-it", ], index=0, key="advisor_model_select", help="Choose which free local LLM to use for advisor suggestions." ) max_per = st.slider( "Default max results per dork", min_value=3, max_value=50, value=10, step=1, key="default_max_results", help="Used as the default when executing dorks in Step 4." ) logging = st.checkbox( "Enable audit logging", value=True, key="enable_audit_logging", help="If off, actions won't be written to the audit trail." ) use_embeddings = st.checkbox( "Enable semantic similarity (embeddings)", value=False, key="enable_embeddings", help="Loads a small sentence-transformer to boost scoring by context relevance." ) light_mode = st.checkbox( "Light mode UI override", value=False, key="light_mode_toggle", help="Apply a lighter palette without reloading base theme" ) return {"model": model, "max_per": max_per, "logging": logging, "light_mode": light_mode} SETTINGS = _get_settings() st.session_state["settings"] = SETTINGS st.session_state.setdefault("_embed_model", None) # --------------------------- # Google Dorks (typed catalog for many entities) # --------------------------- class TypedDork(TypedDict): q: str type: str why: str # Dork category glossary (shown in explainer) DORK_TYPES: Dict[str, str] = { "Footprinting": "Map surface area: sites/subdomains, logins, admin panels, basic presence.", "Directory/Index": "Hunt for open listings or auto-generated indexes exposing files.", "Docs/Collab": "Live docs/boards accidentally exposed (docs.google, Trello, etc.).", "Code/Repo": "Public repos that may contain references, issues, or credentials.", "Credentials/Secrets": "Clues that hint at passwords/keys or places leaks may exist.", "Exposure/Leak": "Mentions of breaches, leaks, or dumps involving the entity.", "People/Profiles": "Official bios, resumes/CVs, speaker pages, researcher profiles.", "Social Activity": "Usernames/handles across social and developer communities.", "Regulatory/Legal": "Filings and official records (e.g., SEC/EDGAR).", "Incidents/Risk": "Incident reports, outages, protests, negative events.", "Academic/Research": "Scholarly/technical works tied to a name or org.", } # ---- Typed dork builders ---- def typed_dorks_for_email(email: str) -> List[TypedDork]: user, dom = (email.split("@", 1) + [""])[:2] return [ {"q": f'"{email}"', "type": "Footprinting", "why": "Exact email mentions across the web."}, {"q": f'intext:"{email}"', "type": "Footprinting", "why": "Mentions inside page bodies."}, {"q": f'intext:"{user}" intext:"{dom}"', "type": "Footprinting", "why": "Mentions with split user/domain."}, {"q": f'site:{dom} intext:"@{dom}"', "type": "Footprinting", "why": "Emails published on the same domain."}, {"q": f'"{email}" filetype:pdf OR filetype:doc OR filetype:xls OR filetype:csv', "type": "Docs/Collab", "why": "Docs that may expose PII/roles."}, {"q": f'"{email}" site:github.com OR site:gitlab.com', "type": "Code/Repo", "why": "Commits/issues referencing the email."}, {"q": f'"{email}" site:gravatar.com', "type": "People/Profiles", "why": "Avatar/profile tied to the email hash."}, {"q": f'"{email}" site:pastebin.com OR site:ghostbin.com OR site:hastebin.com', "type": "Exposure/Leak", "why": "Common paste sites for leaks."}, {"q": f'"{email}" inurl:wp- OR inurl:wp-content OR inurl:wp-config', "type": "Directory/Index", "why": "WordPress artifacts sometimes leak emails."}, {"q": f'"{email}" AROUND(3) "password"', "type": "Credentials/Secrets", "why": "Heuristic for password-adjacent mentions."}, ] def typed_dorks_for_domain(d: str) -> List[TypedDork]: return [ {"q": f"site:{d} -www", "type": "Footprinting", "why": "Apex domain excluding www."}, {"q": f"site:*.{d} -www", "type": "Footprinting", "why": "Enumerate subdomains exposed to crawlers."}, {"q": f'"@{d}"', "type": "Footprinting", "why": "Emails belonging to the domain across the web."}, {"q": f'site:linkedin.com "{d}"', "type": "People/Profiles", "why": "Employees listing org domain."}, {"q": f'site:github.com "{d}"', "type": "Code/Repo", "why": "Repositories/issues referencing the domain."}, {"q": f'site:gitlab.com "{d}"', "type": "Code/Repo", "why": "Alternate forge often used by teams."}, {"q": f'site:docs.google.com "{d}"', "type": "Docs/Collab", "why": "Potentially exposed Google Docs/Sheets/Slides."}, {"q": f'site:trello.com "{d}"', "type": "Docs/Collab", "why": "Public Trello boards occasionally misconfigured."}, {"q": f'"{d}" filetype:pdf OR filetype:doc OR filetype:xls OR filetype:ppt OR filetype:csv', "type": "Docs/Collab", "why": "Documents with the org name/domain."}, {"q": f"site:{d} inurl:login OR inurl:admin OR inurl:signup", "type": "Footprinting", "why": "Auth surfaces (discovery only)."}, {"q": f'site:{d} intitle:"index of"', "type": "Directory/Index", "why": "Open directory listings on that domain."}, {"q": f"site:{d} ext:env OR ext:.git OR ext:git-credentials OR ext:sql OR ext:log", "type": "Credentials/Secrets", "why": "Common secret-bearing file extensions."}, {"q": f'"{d}" breach OR leak OR "data exposure"', "type": "Exposure/Leak", "why": "Press and trackers mentioning exposures."}, ] def typed_dorks_for_ip(ip: str) -> List[TypedDork]: return [ {"q": f'"{ip}"', "type": "Footprinting", "why": "Places where the raw IP is printed or logged."}, {"q": f'intext:"{ip}"', "type": "Footprinting", "why": "Body text mentions (forums, logs)."}, {"q": f'"{ip}" filetype:log OR filetype:txt', "type": "Directory/Index", "why": "Exposed logs referencing the IP."}, {"q": f'"{ip}" blacklist OR abuse', "type": "Incidents/Risk", "why": "Blacklist/abuse mentions and reports."}, {"q": f'"{ip}" intitle:"index of"', "type": "Directory/Index", "why": "Open indexes listing files with that IP."}, ] def typed_dorks_for_username(u: str) -> List[TypedDork]: return [ {"q": f'"{u}"', "type": "Footprinting", "why": "Exact handle mentions across the web."}, {"q": f'"{u}" site:twitter.com OR site:x.com OR site:reddit.com OR site:github.com OR site:stackexchange.com', "type": "Social Activity", "why": "Find consistent identity across major platforms."}, {"q": f'"{u}" site:medium.com OR site:substack.com', "type": "People/Profiles", "why": "Author pages tied to the handle."}, {"q": f'"{u}" site:keybase.io', "type": "People/Profiles", "why": "Cryptographic identity/proofs."}, {"q": f'"{u}" inurl:users OR inurl:profile', "type": "Footprinting", "why": "Generic user profile URLs."}, {"q": f'"{u}" filetype:pdf resume OR "curriculum vitae"', "type": "People/Profiles", "why": "CVs/resumes listing the handle."}, {"q": f'"{u}" AROUND(3) email', "type": "People/Profiles", "why": "Correlate handle to emails in bios/posts."}, {"q": f'"{u}" avatar OR "profile photo"', "type": "People/Profiles", "why": "Images tied to the identity."}, ] def typed_dorks_for_person(name: str) -> List[TypedDork]: return [ {"q": f'"{name}"', "type": "Footprinting", "why": "Exact full-name mentions."}, {"q": f'"{name}" site:linkedin.com', "type": "People/Profiles", "why": "Primary professional profile."}, {"q": f'"{name}" filetype:pdf resume OR "curriculum vitae"', "type": "People/Profiles", "why": "Resume/CV documents."}, {"q": f'"{name}" conference OR talk OR keynote', "type": "People/Profiles", "why": "Speaker bios and conference pages."}, {"q": f'"{name}" site:github.com OR site:gitlab.com', "type": "Code/Repo", "why": "Developer activity tied to the name."}, {"q": f'"{name}" site:researchgate.net OR site:scholar.google.com', "type": "Academic/Research", "why": "Scholarly output."}, {"q": f'"{name}" site:medium.com OR site:substack.com', "type": "People/Profiles", "why": "Editorial/social writing."}, {"q": f'"{name}" "email" OR "contact"', "type": "People/Profiles", "why": "Pages listing contact info."}, ] def typed_dorks_for_org(org: str) -> List[TypedDork]: return [ {"q": f'"{org}" site:sec.gov OR site:edgar', "type": "Regulatory/Legal", "why": "Official SEC/EDGAR filings."}, {"q": f'"{org}" contract award OR RFP OR "sources sought"', "type": "Regulatory/Legal", "why": "Gov procurement history and notices."}, {"q": f'"{org}" breach OR incident OR "data exposure"', "type": "Incidents/Risk", "why": "News/trackers about incidents/leaks."}, {"q": f'"{org}" site:linkedin.com', "type": "People/Profiles", "why": "Employees and org page."}, {"q": f'"{org}" site:github.com OR site:gitlab.com', "type": "Code/Repo", "why": "Public repos under org name."}, {"q": f'"{org}" filetype:pdf OR filetype:doc OR filetype:ppt OR filetype:xls', "type": "Docs/Collab", "why": "Documents carrying org name."}, {"q": f'"{org}" site:docs.google.com OR site:trello.com', "type": "Docs/Collab", "why": "Potentially exposed docs/boards."}, ] def typed_dorks_for_location(loc: str) -> List[TypedDork]: return [ {"q": f'"{loc}" incident OR protest OR outage', "type": "Incidents/Risk", "why": "Events/incidents tied to the place."}, {"q": f'"{loc}" satellite imagery OR "before after"', "type": "Footprinting", "why": "Imagery context for geospatial checks."}, {"q": f'"{loc}" site:news', "type": "Incidents/Risk", "why": "Recent news mentions for the place."}, {"q": f'"{loc}" filetype:pdf report', "type": "Docs/Collab", "why": "Reports that reference the location."}, ] def typed_dorks_for_file(desc: str) -> List[TypedDork]: return [ {"q": f'"{desc}" filetype:pdf OR filetype:doc OR filetype:xls OR filetype:ppt OR filetype:csv', "type": "Docs/Collab", "why": "Document hunting by keyword."}, {"q": f'"{desc}" site:archive.org', "type": "Docs/Collab", "why": "Wayback/Archive artifacts."}, {"q": f'"{desc}" intitle:"index of"', "type": "Directory/Index", "why": "Open listings that may contain files."}, ] TYPED_DORK_MAP: Dict[str, Any] = { "Email Address": typed_dorks_for_email, "Domain / Website": typed_dorks_for_domain, "IP Address": typed_dorks_for_ip, "Username / Handle": typed_dorks_for_username, "Named Individual": typed_dorks_for_person, "Organization / Company": typed_dorks_for_org, "Location": typed_dorks_for_location, "File / Image": typed_dorks_for_file, } # --------------------------- # STEP 1: Explainer # --------------------------- def render_dorks_explainer(entity_type: str, entity_value: str): st.subheader("Step 1: Dork Explainer") st.caption("These are categorized OSINT search operators. Copy/paste into Google if you like; this app automates via DuckDuckGo to respect ToS.") with st.expander("Dork categories explained", expanded=False): for t, desc in DORK_TYPES.items(): st.markdown(f"**{t}** — {desc}") builder = TYPED_DORK_MAP.get(entity_type) typed = builder(entity_value) if (builder and entity_value) else [] if not typed: st.info("Enter an entity value above to see a tailored catalog.") return for d in typed: st.markdown(f"- **[{d['type']}]** `{d['q']}`") st.markdown(f" {d['why']}", unsafe_allow_html=True) # --------------------------- # STEP 2: Advisor (LLM-powered with rules fallback) # --------------------------- # Goal weights for rules-based fallback / blending GOAL_WEIGHTS: Dict[str, Dict[str, int]] = { "Map footprint / surface": {"Footprinting": 3, "Directory/Index": 2}, "Find documents & spreadsheets": {"Docs/Collab": 3, "Directory/Index": 2}, "Discover code & credentials": {"Code/Repo": 3, "Credentials/Secrets": 3, "Directory/Index": 2}, "Identify breaches/leaks": {"Exposure/Leak": 3, "Credentials/Secrets": 2}, "Find people & org info": {"People/Profiles": 3, "Regulatory/Legal": 2}, "Track incidents / risk": {"Incidents/Risk": 3}, "Academic/technical trails": {"Academic/Research": 3}, } DEFAULT_GOALS = list(GOAL_WEIGHTS.keys()) MODEL_ID_MAP = { "qwen2.5-1.5b-instruct": "Qwen/Qwen2.5-1.5B-Instruct", "phi-3-mini-4k-instruct": "microsoft/phi-3-mini-4k-instruct", "gemma-2-2b-it": "google/gemma-2-2b-it", } # --------------------------- # Known Facts Model # --------------------------- @dataclass class KnownFacts: handles: List[str] real_names: List[str] emails: List[str] domains: List[str] ips: List[str] locations: List[str] orgs: List[str] context: str @classmethod def from_session(cls) -> "KnownFacts": return st.session_state.get("known_facts") or cls([], [], [], [], [], [], [], "") def _parse_csv(s: str) -> List[str]: return [x.strip() for x in (s or "").split(",") if x.strip()] def _known_facts_ui(): st.subheader("Known Facts / Prior Intelligence") st.caption("Provide what you already know. This seeds scoring & generation.") col_a, col_b, col_c = st.columns(3) with col_a: handles = st.text_area("Handles / Usernames (comma)", key="kf_handles", height=70) emails = st.text_area("Emails (comma)", key="kf_emails", height=70) ips = st.text_area("IP addresses (comma)", key="kf_ips", height=70) with col_b: real_names = st.text_area("Real Names (comma)", key="kf_real_names", height=70, help="Full names or key name variants") domains = st.text_area("Domains (comma)", key="kf_domains", height=70) orgs = st.text_area("Organizations (comma)", key="kf_orgs", height=70) with col_c: locations = st.text_area("Locations (comma)", key="kf_locations", height=70) context = st.text_area("Context / Keywords", key="kf_context", height=160, help="Free-text mission context, tech stack, roles, etc.") if st.button("Save Known Facts", key="btn_save_facts"): facts = KnownFacts( handles=_parse_csv(handles), real_names=_parse_csv(real_names), emails=_parse_csv(emails), domains=_parse_csv(domains), ips=_parse_csv(ips), locations=_parse_csv(locations), orgs=_parse_csv(orgs), context=context.strip(), ) st.session_state["known_facts"] = facts st.success("Facts saved (session only).") facts = KnownFacts.from_session() st.markdown(f"**Current facts loaded:** {len(facts.handles)} handles, {len(facts.emails)} emails, {len(facts.domains)} domains, {len(facts.real_names)} names.") st.markdown("---") st.markdown("### Candidate Generation") st.caption("Generate permutations / derived candidates from known facts.") if st.button("Generate Candidates", key="btn_gen_candidates"): facts = KnownFacts.from_session() usernames = set(facts.handles) # simple mutations for h in list(usernames): for suf in ["123", "01", "_sec", "_research", "-dev"]: usernames.add(h + suf) if h.isalpha(): usernames.add(h + "1") # email permutations (if have names + domains) emails = set(facts.emails) if facts.real_names and facts.domains: first = facts.real_names[0].split()[0].lower() last = facts.real_names[0].split()[-1].lower() for d in facts.domains[:3]: emails.update({ f"{first}.{last}@{d}", f"{first}{last}@{d}", f"{first[0]}{last}@{d}", f"{first}_{last}@{d}", }) # domain variants (very light) dom_vars = set(facts.domains) for d in facts.domains: if d.count('.') >= 1: root = d.split('.')[0] tld = d.split('.')[-1] dom_vars.add(root + "-dev." + tld) dom_vars.add(root + "-staging." + tld) st.session_state["generated_candidates"] = { "usernames": sorted(list(usernames))[:100], "emails": sorted(list(emails))[:100], "domains": sorted(list(dom_vars))[:100] } st.success("Candidates generated.") cand = st.session_state.get("generated_candidates") if cand: st.write("Usernames (sample)", cand["usernames"][:10]) st.write("Emails (sample)", cand["emails"][:10]) st.write("Domains (sample)", cand["domains"][:10]) if st.button("Add All Candidates to Facts", key="btn_add_cand"): facts = KnownFacts.from_session() facts.handles = sorted(list(set(facts.handles + cand["usernames"]))) facts.emails = sorted(list(set(facts.emails + cand["emails"]))) facts.domains = sorted(list(set(facts.domains + cand["domains"]))) st.session_state["known_facts"] = facts st.success("Candidates merged into facts.") def _generate_investigation_plan(entity_type: str, entity_value: str, facts: KnownFacts) -> Dict[str, Any]: """Produce a structured investigation plan based on current facts and target type.""" objectives = [ "Establish definitive identifiers (emails, handles, domains) to anchor pivots", "Map exposed surface (sites, code, documents, credentials indicators)", "Correlate identities across platforms and artifacts", "Identify signs of exposure, breach, or sensitive data leakage", "Prioritize high-confidence findings for deeper manual review" ] # Gap analysis gaps = [] if not facts.emails: gaps.append("No confirmed email addresses") if not facts.handles: gaps.append("No social/developer handles") if not facts.domains and entity_type != "Domain / Website": gaps.append("No related domains captured") if not facts.real_names and entity_type in ("Named Individual", "Organization / Company"): gaps.append("No individual name variants") if not facts.orgs and entity_type == "Named Individual": gaps.append("No employing organizations") if not facts.context: gaps.append("Context / mission keywords empty (reduces scoring nuance)") if not gaps: gaps = ["Current fact set sufficient for first enumeration pass"] # Phase recommendations phases: List[Dict[str, Any]] = [] phases.append({ "phase": "Phase 1 - Baseline & Fact Hardening", "goals": ["Normalize entity value", "Collect canonical facts", "Note obvious pivots"], "actions": [ "Record primary identifier in Known Facts", "Add any immediately known emails, domains, handles", "Capture mission / context keywords (tech stack, industry, roles)", "Run Advisor for broad Footprinting and People queries" ] }) phases.append({ "phase": "Phase 2 - Surface Enumeration", "goals": ["Map public assets", "Discover documents & code"], "actions": [ "Select dorks: site:, filetype:, intitle:'index of' variations", "Enumerate repo references (GitHub/GitLab) and note unique strings", "Pull down high-signal docs (PDF/DOCX) and extract metadata for hidden emails/handles" ] }) phases.append({ "phase": "Phase 3 - Identity Correlation", "goals": ["Link handles to emails", "Find cross-platform reuse"], "actions": [ "Search handles with platform-specific queries (social + developer)", "Leverage resume / CV / speaker page dorks for name-email alignment", "Add newly confirmed identifiers back into Known Facts and re-score" ] }) phases.append({ "phase": "Phase 4 - Exposure & Risk Signals", "goals": ["Detect leak indicators", "Prioritize potential sensitive exposure"], "actions": [ "Run leak / breach / paste oriented dorks including credential keywords", "Inspect any pastebin / gist / artifact snippets for policy or secret references", "Flag findings with multiple co-occurring identifiers for manual escalation" ] }) phases.append({ "phase": "Phase 5 - Consolidation & Reporting", "goals": ["Score & rank findings", "Produce exportable report"], "actions": [ "Re-score after final fact enrichment", "Visualize graph to ensure high-score nodes connect multiple anchors", "Export HTML report and retain audit log", "Document residual gaps & next potential pivots (e.g., historical archives, certificate transparency)" ] }) return { "entity_type": entity_type, "entity_value": entity_value, "objectives": objectives, "gaps": gaps, "phases": phases, "facts_snapshot": facts.__dict__, } def render_investigation_plan(entity_type: str, entity_value: str): st.subheader("Investigation Plan") facts = KnownFacts.from_session() plan = _generate_investigation_plan(entity_type, entity_value, facts) st.markdown("### Core Objectives") for o in plan["objectives"]: st.markdown(f"- {o}") st.markdown("### Current Gaps") for g in plan["gaps"]: st.markdown(f"- {g}") st.markdown("### Phased Approach") for ph in plan["phases"]: with st.expander(ph["phase"], expanded=False): st.markdown("**Goals**") for g in ph["goals"]: st.markdown(f"- {g}") st.markdown("**Actions**") for a in ph["actions"]: st.markdown(f"- {a}") if st.button("Export Plan (Markdown)", key="btn_export_plan"): md_lines = [f"# Investigation Plan: {plan['entity_type']} — {plan['entity_value']}", "", "## Objectives"] md_lines += [f"- {o}" for o in plan["objectives"]] md_lines += ["", "## Gaps"] + [f"- {g}" for g in plan["gaps"]] md_lines += ["", "## Phases"] for ph in plan["phases"]: md_lines.append(f"### {ph['phase']}") md_lines.append("**Goals**") md_lines += [f"- {g}" for g in ph["goals"]] md_lines.append("**Actions**") md_lines += [f"- {a}" for a in ph["actions"]] md_lines.append("") md = "\n".join(md_lines) st.download_button("Download Plan", md, file_name="investigation_plan.md", mime="text/markdown") def _score_dork_rule(d: TypedDork, goals: List[str], user_note: str) -> float: s = 1.0 for g in goals: for cat, w in GOAL_WEIGHTS.get(g, {}).items(): if d["type"] == cat: s += w note = (user_note or "").lower() if any(k in note for k in ["password", "credential", "secret", "token"]): if d["type"] in {"Credentials/Secrets", "Code/Repo", "Directory/Index"}: s += 1.5 if any(k in note for k in ["resume", "cv", "employee", "contact"]): if d["type"] in {"People/Profiles"}: s += 1.0 if any(k in note for k in ["breach", "leak", "dump", "paste"]): if d["type"] in {"Exposure/Leak", "Credentials/Secrets"}: s += 1.5 if any(k in note for k in ["paper", "research", "doi", "citation"]): if d["type"] in {"Academic/Research"}: s += 1.0 return s def _recommend_rules(entity_type: str, entity_value: str, goals: List[str], user_note: str, top_k: int = 10) -> List[TypedDork]: builder = TYPED_DORK_MAP.get(entity_type) typed = builder(entity_value) if (builder and entity_value) else [] ranked = sorted(typed, key=lambda d: _score_dork_rule(d, goals, user_note), reverse=True) return ranked[:top_k] def _safe_json_list(txt: str) -> List[Dict[str, Any]]: """Best-effort extraction of a JSON list from raw LLM text or user input. Strategy: 1. Strip surrounding markdown code fences (with or without language tag). 2. Attempt direct json.loads. 3. Locate outermost '[' ... ']' span and attempt parse. Returns [] on any failure or non-list root. """ if not txt: return [] s = txt.strip() # Remove markdown fences like ```json ... ``` if s.startswith("```"): lines = s.split("\n") # drop first fence line lines = lines[1:] # drop trailing fence line if present if lines and lines[-1].strip() == "```": lines = lines[:-1] s = "\n".join(lines).strip() # Try direct parse try: data = json.loads(s) if isinstance(data, list): return data # type: ignore[return-value] except Exception: pass # Fallback: largest bracketed list slice start = s.find("[") end = s.rfind("]") if start != -1 and end != -1 and end > start: candidate = s[start:end+1] try: data = json.loads(candidate) if isinstance(data, list): return data # type: ignore[return-value] except Exception: pass return [] def _hf_infer(model_id: str, prompt: str, max_new_tokens: int = 384, temperature: float = 0.2) -> Optional[str]: """Call Hugging Face Inference API if token & requests available. Returns generated text or None (which triggers rule-based fallback).""" if requests is None: st.warning("'requests' not installed; cannot call Hugging Face Inference API. Falling back to rules.") return None api_token = os.getenv("HF_API_TOKEN") if not api_token: st.warning("HF_API_TOKEN not set. Add it as a secret/environment variable to enable LLM advisor. Falling back to rules.") return None url = f"https://api-inference.huggingface.co/models/{model_id}" headers = {"Authorization": f"Bearer {api_token}"} payload = { "inputs": prompt, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "return_full_text": False, }, } try: resp = requests.post(url, headers=headers, json=payload, timeout=90) resp.raise_for_status() data = resp.json() if isinstance(data, list) and data and isinstance(data[0], dict) and "generated_text" in data[0]: return data[0]["generated_text"] if isinstance(data, dict) and "generated_text" in data: return data["generated_text"] # Unknown shape: return serialized return json.dumps(data) except Exception as e: st.warning(f"HF inference error: {e}. Falling back to rules.") return None def _build_llm_prompt(entity_type: str, entity_value: str, goals: List[str], hint: str, baseline: List[TypedDork], top_k: int) -> str: cat_list = ", ".join(sorted(DORK_TYPES.keys())) baseline_lines = "\n".join([f"- {d['type']}: {d['q']} // {d['why']}" for d in baseline[:25]]) return f""" You are an OSINT assistant that crafts focused Google dorks. Given the entity type and value, the user's goals, and an optional hint, return a JSON array (and ONLY a JSON array) of up to {top_k} objects with this schema: {{"q": "", "type": "", "why": "<1 sentence rationale>"}} Rules: - Prefer free, public sources; avoid paid services. - Keep queries precise; quote exact strings; use site:, filetype:, inurl:, intitle:, and AROUND(n) when helpful. - Use ONLY categories from the allowed list above. - Output must be valid JSON (no prose, no markdown fences). ENTITY_TYPE: {entity_type} ENTITY_VALUE: {entity_value} GOALS: {goals} HINT: {hint or '(none)'} BASELINE_CATALOG (for inspiration, don't just repeat): {baseline_lines} """ def _recommend_llm(entity_type: str, entity_value: str, goals: List[str], hint: str, top_k: int) -> List[TypedDork]: builder = TYPED_DORK_MAP.get(entity_type) baseline = builder(entity_value) if (builder and entity_value) else [] model_key = st.session_state.get("settings", {}).get("model", "qwen2.5-1.5b-instruct") model_id = MODEL_ID_MAP.get(model_key, model_key) prompt = _build_llm_prompt(entity_type, entity_value, goals, hint, baseline, top_k) raw = _hf_infer(model_id, prompt) if not raw: return [] parsed = _safe_json_list(raw) out: List[TypedDork] = [] for item in parsed: if not isinstance(item, dict): continue q = str(item.get("q", "")).strip() typ = str(item.get("type", "Footprinting")).strip() why = str(item.get("why", "Suggested by LLM")).strip() if not q: continue if typ not in DORK_TYPES: typ = "Footprinting" out.append({"q": q, "type": typ, "why": why}) # Dedupe while preserving order seen = set() deduped: List[TypedDork] = [] for d in out: if d["q"] in seen: continue seen.add(d["q"]) deduped.append(d) return deduped[:top_k] def render_dork_recommender(entity_type: str, entity_value: str): st.subheader("Step 2: Advisor") goals = st.multiselect("What are you trying to do?", DEFAULT_GOALS, default=["Map footprint / surface", "Find documents & spreadsheets"], key="advisor_goals") hint = st.text_input("Optional hint (e.g., 'credentials around build system', 'employee directory')", key="advisor_hint") top_k = st.slider("How many suggestions?", 3, 20, 10, key="advisor_topk") use_llm = st.checkbox("Use advisor LLM (Hugging Face Inference API)", value=False, key="use_llm_checkbox", help="Requires HF_API_TOKEN environment secret. Falls back to rules if unavailable.") if st.button("Suggest dorks", key="btn_suggest"): recs: List[TypedDork] = [] if use_llm: recs = _recommend_llm(entity_type, entity_value, goals, hint, top_k) if not recs: recs = _recommend_rules(entity_type, entity_value, goals, hint, top_k) if not recs: st.warning("Enter a valid entity value first.") return st.session_state["dork_recs"] = recs st.markdown("#### Recommended dorks") for r in recs: st.markdown(f"- **[{r['type']}]** `{r['q']}`") st.markdown(f" {r['why']}", unsafe_allow_html=True) # --------------------------- # STEP 3: Selection # --------------------------- def render_dork_selection(entity_type: str, entity_value: str): st.subheader("Step 3: Select dorks") recs = st.session_state.get("dork_recs", []) choice = st.radio("Select method", ["Accept advisor", "Pick from catalog", "Custom"], key="method_radio") final = [] if choice == "Accept advisor": final = [r["q"] for r in recs] elif choice == "Pick from catalog": typed = TYPED_DORK_MAP[entity_type](entity_value) for idx, d in enumerate(typed): if st.checkbox(d["q"], key=f"pick_{idx}"): final.append(d["q"]) elif choice == "Custom": txt = st.text_area("Enter custom dorks") if txt: final = [l.strip() for l in txt.splitlines() if l.strip()] st.session_state["selected_dorks"] = final st.write("Final Basket:", final) # --------------------------- # STEP 4: Execution + Metadata # --------------------------- def _audit_init(): st.session_state.setdefault("audit", []) def _audit_log(action: str, **details): if not st.session_state.get("settings", {}).get("logging", True): return _audit_init() st.session_state["audit"].append({"ts": datetime.utcnow().isoformat()+"Z", "action": action, **details}) def ddg_search(query: str, max_results: int=5): if DDGS is None: return [] with DDGS() as ddgs: return list(ddgs.text(query, max_results=max_results)) # --------------------------- # Scoring # --------------------------- SOURCE_RELIABILITY = { "high": [".gov", ".mil", ".edu", "sec.gov", "reuters", "bloomberg", "nytimes", "wsj"], "med": ["github.com", "gitlab.com", "medium.com", "substack.com", "bbc"], } def _source_reliability(url: str) -> str: url_l = (url or "").lower() for kw in SOURCE_RELIABILITY["high"]: if kw in url_l: return "High" for kw in SOURCE_RELIABILITY["med"]: if kw in url_l: return "Medium" return "Low" def _fuzzy_match(a: str, b: str) -> float: if not a or not b: return 0.0 if a.lower() == b.lower(): return 1.0 if fuzz: return fuzz.ratio(a.lower(), b.lower()) / 100.0 return 0.0 def score_finding(row: Dict[str, Any], facts: KnownFacts) -> Dict[str, Any]: title = row.get("title") or row.get("heading") or "" snippet = row.get("body") or row.get("snippet") or "" url = row.get("href") or row.get("link") or "" text = f"{title}\n{snippet}".lower() score = 0 comps: List[Dict[str, Any]] = [] def add(points: int, label: str, reason: str): nonlocal score score += points comps.append({"label": label, "points": points, "reason": reason}) # Exact matches hits = 0 for e in facts.emails: if e.lower() in text: add(25, "Email match", e) hits += 1 for h in facts.handles: if h.lower() in text: add(15, "Handle match", h) hits += 1 for d in facts.domains: if d.lower() in text: add(10, "Domain mention", d) hits += 1 for ip in facts.ips: if ip and ip.lower() in text: add(10, "IP mention", ip) hits += 1 for org in facts.orgs: if org.lower() in text: add(8, "Org mention", org) hits += 1 for name in facts.real_names: if name.lower() in text: add(20, "Name mention", name) hits += 1 else: # fuzzy for token in name.split(): for word in text.split(): if _fuzzy_match(token, word) >= 0.9: add(8, "Fuzzy name token", f"{token}->{word}") hits += 1 break if hits >= 2: add(10, "Co-occurrence", f"{hits} fact tokens present") # Source reliability rel = _source_reliability(url) if rel == "High": add(10, "Source reliability", rel) elif rel == "Medium": add(5, "Source reliability", rel) # Context keywords basic ctx_hits = 0 if facts.context: ctx_hits = sum(1 for kw in facts.context.lower().split() if kw and kw in text) if ctx_hits >= 3: add(10, "Context alignment", f"{ctx_hits} context keywords") elif ctx_hits == 2: add(6, "Context alignment", "2 context keywords") elif ctx_hits == 1: add(3, "Context alignment", "1 context keyword") # Optional embedding similarity (semantic relevance to context) if ctx_hits < 3 and st.session_state.get("settings", {}).get("enable_embeddings") and facts.context and SentenceTransformer: emb_model = st.session_state.get("_embed_model") if emb_model is None: with st.spinner("Loading embedding model (once)..."): try: emb_model = SentenceTransformer("all-MiniLM-L6-v2") st.session_state["_embed_model"] = emb_model except Exception: emb_model = None if emb_model: try: q_emb = emb_model.encode([facts.context[:512]])[0] doc_emb = emb_model.encode([text[:1024]])[0] # cosine dot = float((q_emb @ doc_emb) / ((q_emb**2).sum()**0.5 * (doc_emb**2).sum()**0.5)) if dot > 0.35: pts = int(min(20, (dot - 0.35) / (0.30) * 20)) # scale 0.35..0.65 -> 0..20 if pts > 0: add(pts, "Semantic similarity", f"cos={dot:.2f}") except Exception: pass level = "High" if score >= 70 else ("Medium" if score >= 40 else "Low") explanation = "; ".join(f"{c['label']} +{c['points']} ({c['reason']})" for c in comps) return { **row, "score": score, "level": level, "explanation": explanation, "components": comps, "reliability": rel, "url": url, "title": title, "snippet": snippet, } def score_all_findings(rows: List[Dict[str, Any]], facts: KnownFacts) -> List[Dict[str, Any]]: return [score_finding(r, facts) for r in rows] # File/Image metadata extraction def extract_metadata(upload) -> Dict[str, Any]: info: Dict[str, Any] = {} if not upload: return info name = upload.name.lower() try: if name.endswith(".pdf") and PdfReader: reader = PdfReader(upload) info = {"Pages": len(reader.pages), "Meta": dict(reader.metadata)} elif name.endswith(".docx") and docx: doc = docx.Document(upload) cp = doc.core_properties info = {"Title": cp.title, "Author": cp.author, "Created": cp.created} elif (name.endswith(".doc") or name.endswith(".xls")) and olefile: if olefile.isOleFile(upload): info = {"OLE": "Legacy Office file detected"} elif name.endswith((".mp3", ".flac", ".ogg", ".m4a")) and MutagenFile: audio = MutagenFile(upload) info = dict(audio) if audio else {} elif name.endswith((".jpg", ".jpeg", ".png")) and exifread: tags = exifread.process_file(upload) info = {tag: str(val) for tag, val in tags.items()} except Exception as e: info = {"error": str(e)} return info # --------------------------- # Graph Visualization # --------------------------- def build_graph(scored: List[Dict[str, Any]], facts: KnownFacts) -> Optional[str]: if not nx or not Network: return None G = nx.Graph() # Add fact nodes for email in facts.emails: G.add_node(email, type="email") for h in facts.handles: G.add_node(h, type="handle") for d in facts.domains: G.add_node(d, type="domain") for n in facts.real_names: G.add_node(n, type="name") # Add finding nodes & edges for f in scored[:300]: url = f.get("url") or "unknown" G.add_node(url, type="finding", score=f.get("score",0)) text = (f.get("title","") + " " + f.get("snippet",""))[:400].lower() linked = False for token in facts.emails + facts.handles + facts.domains + facts.real_names: if token.lower() and token.lower() in text: G.add_edge(token, url) linked = True if not linked and f.get("level") == "High": # still include high score node continue # Visualize net = Network(height="550px", width="100%", bgcolor="#111", font_color="white") for n, data in G.nodes(data=True): color = { "email": "#ff7f50", "handle": "#1e90ff", "domain": "#32cd32", "name": "#daa520", "finding": "#888" }.get(data.get("type"), "#999") size = 15 if data.get("type") != "finding" else max(5, min(25, int(data.get("score",10)/4))) net.add_node(n, label=n[:30], color=color, title=n, size=size) for u,v in G.edges(): net.add_edge(u,v) path = "graph.html" net.show(path) try: with open(path, "r", encoding="utf-8") as f: return f.read() except Exception: return None # --------------------------- # Report Export # --------------------------- HTML_TEMPLATE = """OSINT Report

OSINT Investigation Report

Summary

Entity Type: {{ entity_type }}
Entity Value: {{ entity_value }}
Generated: {{ generated }} UTC

Known Facts

{{ facts_json }}

Findings (Top {{ findings|length }})

{% for f in findings %} {% endfor %}
ScoreLevelTitleURLReliabilityExplanation
{{ f.score }}{{ f.level }}{{ f.title }}link{{ f.reliability }}{{ f.explanation }}
""" def export_report(entity_type: str, entity_value: str, facts: KnownFacts, scored: List[Dict[str, Any]]): if not Template: st.warning("jinja2 not installed; cannot build HTML report.") return tpl = Template(HTML_TEMPLATE) html = tpl.render( entity_type=entity_type, entity_value=entity_value, generated=datetime.utcnow().isoformat(), facts_json=json.dumps(facts.__dict__, indent=2), findings=scored[:200], ) st.download_button("Download HTML Report", data=html.encode("utf-8"), file_name="osint_report.html", mime="text/html") # --------------------------- # Username Availability Probe (simple) # --------------------------- PLATFORM_PATTERNS: Dict[str,str] = { "GitHub": "https://github.com/{user}", "Twitter": "https://x.com/{user}", "Reddit": "https://www.reddit.com/user/{user}", "Medium": "https://medium.com/@{user}", } def probe_usernames(users: List[str], limit: int = 10) -> List[Dict[str,str]]: out = [] if requests is None: return out for u in users[:limit]: for plat, pattern in PLATFORM_PATTERNS.items(): url = pattern.format(user=u) status = "?" try: r = requests.get(url, timeout=5) if r.status_code == 200: status = "Exists" elif r.status_code == 404: status = "Not Found" else: status = str(r.status_code) except Exception: status = "Error" out.append({"platform": plat, "username": u, "status": status}) return out def render_step4_execution(entity_type: str, entity_value: str): st.subheader("Step 4: Execute & Metadata") final = st.session_state.get("selected_dorks", []) if not final: st.info("No dorks selected.") return max_per = st.slider("Max results", 3, 20, st.session_state.get("settings", {}).get("max_per", 10)) if st.button("Run dorks"): # Progressive skeleton loader while executing each query placeholder = st.empty() results: List[Dict[str, Any]] = [] total_expected = len(final) * max_per for i, q in enumerate(final, start=1): remaining = len(final) - i + 1 est_remaining = remaining * max_per # Render skeletons representing expected remaining results (capped for performance) with placeholder.container(): st.markdown("#### Running searches…") st.caption(f"Query {i}/{len(final)}: {q}") skel_blocks = min(est_remaining, 18) # avoid huge DOM # Distribute size variations for visual interest sizes = ["sm", "md", "lg"] rows_html = [] for j in range(skel_blocks): size = sizes[j % len(sizes)] rows_html.append(f'
') st.markdown( '
' + "".join(rows_html) + "
", unsafe_allow_html=True, ) # Execute the actual search rows = ddg_search(q, max_results=max_per) _audit_log("dork_run", dork=q, results=len(rows)) results.extend(rows) # Clear placeholder after completion placeholder.empty() st.session_state["dork_results"] = results # compute scores after acquiring all results facts = KnownFacts.from_session() st.session_state["scored_results"] = score_all_findings(results, facts) if res := st.session_state.get("dork_results"): st.json(res) audit_str = "\n".join(json.dumps(ev) for ev in st.session_state["audit"]) st.download_button("Download audit", audit_str, "audit.jsonl") st.markdown("---") st.subheader("File/Image Metadata Extractor") upload = st.file_uploader("Upload a file (pdf, docx, mp3, jpg, etc.)") if upload: meta = extract_metadata(upload) st.json(meta) # --------------------------- # Main # --------------------------- def render_help_tab(): st.subheader("How To Use This OSINT Investigator Suite") st.markdown(""" This tab is a quick field manual. It shows the purpose of every tab, the workflow order, and pro tips. ### Recommended Workflow (Fast Path) 1. Known Facts – Load seed identifiers (handles, emails, domains, names). 2. Plan – Review the autogenerated phased investigation plan; adjust facts if gaps obvious. 3. Explainer – Learn the dork building logic for transparency (optional). 4. Advisor – Get recommended dorks (rule + optional LLM). Refine, then accept. 5. Selection – Curate / edit / remove dorks; finalize the set to run. 6. Execution – Run dorks (skeleton loaders show progress); extract file/image metadata if you have artifacts. 7. Scoring – Review confidence scores, filter, read explanations, iterate by adding new facts and re-scoring. 8. Graph – Visual relationship view (requires networkx + pyvis) to spot high‑intersection nodes. 9. Report – Export an HTML snapshot for stakeholders / evidence chain. 10. Usernames – Probe handle existence across common platforms. 11. Help – (This) reference card anytime. --- ### Tab Details & Tips **Known Facts** - Add all solid identifiers early; scoring & dork generation leverage them. - Handles & emails dramatically raise confidence when co-occurring in sources. - Update facts after each scouting loop (new domains from findings, etc.). **Plan** - Generated phases: Recon, Expansion, Correlation, Deep Dive, Reporting. - Use it as a narrative backbone for your final export or task tickets. **Explainer** - Shows how base + contextual tokens assemble into search dorks by entity type. - Use to justify methodology or teach newcomers. **Advisor** - Hybrid: deterministic heuristic rules plus optional LLM (if HF token + model set in settings). - Toggle embedding/semantic features in settings (if present) to enrich scoring later. - Accept the generated list to push candidates to Selection. **Selection** - Final edit surface. Remove noisy / redundant queries before execution. - Keep a balanced mix: broad footprint + specific leak/file/resource patterns. **Execution** - Click Run dorks: animated skeleton placeholders appear per batch while searches resolve. - Results cached in session: re-running overwrites (audit log tracks runs). - Metadata Extractor: Upload docs / images to pull EXIF, PDF metadata, docx core props, audio tags. **Scoring** - Each finding scored from component signals (exact identifiers, fuzzy tokens, co-occurrence, reliability, context keywords, semantic similarity). - Levels: High ≥70, Medium ≥40. Use filters + search bar to triage. - Re-score after updating Known Facts or enabling embeddings. - "Full Explanations" expands reasoning transparency for defensibility. **Graph** - Visual pivot map: nodes sized by aggregated score; edges for shared identifiers. - Use to spot central assets (good pivot candidates) quickly. - If graph libs missing you'll see an install hint (they're listed in requirements). **Report** - Generates a standalone HTML (includes styling + key metrics) for sharing. - Consider exporting after each major iteration to preserve state (version trail). **Usernames** - Lightweight existence probe (HTTP status heuristic). "Exists" ≠ ownership proof. - Add more platforms by extending PLATFORM_PATTERNS in code. **Chat Assistant (Floating)** - Noir-style guidance; quick buttons for common pivots. - If a model + token configured, responses may blend LLM nuance with rule hints; otherwise rule-based only. - Close with ✕; reopen with the 🕵️ button. **Light / Dark Toggle** - Sidebar toggle (if present) swaps theme classes; custom components auto-adapt. **Skeleton Loaders** - Shimmering bars appear during long search batches to indicate progress. --- ### Power User Tips - Iterative Loop: (Run) → (Score) → (Add new facts from findings) → (Re-score) → (Graph) → (Report). - High-value pivots: Rare email domains, unique handles in code repos, author names in PDF metadata. - Noise Control: Remove generic dorks that return unrelated trending content before executing. - Evidence Chain: Audit log (download on Execution tab) + HTML reports form a defensible trail. ### Performance Notes - Limiting Max results reduces API latency & keeps scoring responsive. - Embedding model loads lazily—first semantic scoring may pause a few seconds. - Graph view caps large result sets to avoid browser lockups. ### Glossary - Dork: Crafted search query combining identifiers + context tokens. - Pivot: New investigative direction unlocked by a discovered unique attribute. - Co-occurrence: Multiple target identifiers appearing together in one source. ### Ethics Reminder Public sources only. No credential stuffing, intrusion, or accessing private data stores. Respect rate limits & platform ToS. """) def main(): st.markdown("""
🕵️
OSINT Investigator Suite
AI-Augmented
Heuristic Scoring
Report Export
""", unsafe_allow_html=True) entity_type = st.selectbox("Entity type", list(TYPED_DORK_MAP.keys()), key="entity_type") entity_value = st.text_input("Entity value", "user@example.com", key="entity_value") if entity_type and entity_value: tabs = st.tabs(["Known Facts", "Plan", "Explainer", "Advisor", "Selection", "Execution", "Scoring", "Graph", "Report", "Usernames", "Help"]) with tabs[0]: _known_facts_ui() with tabs[1]: render_investigation_plan(entity_type, entity_value) with tabs[2]: render_dorks_explainer(entity_type, entity_value) with tabs[3]: render_dork_recommender(entity_type, entity_value) with tabs[4]: render_dork_selection(entity_type, entity_value) with tabs[5]: render_step4_execution(entity_type, entity_value) with tabs[6]: st.subheader("Scoring & Confidence") facts = KnownFacts.from_session() scored = st.session_state.get("scored_results") if not scored: st.info("Run dorks first to generate findings and scores.") else: high = sum(1 for r in scored if r["level"] == "High") med = sum(1 for r in scored if r["level"] == "Medium") low = sum(1 for r in scored if r["level"] == "Low") st.markdown("
Findings Overview
", unsafe_allow_html=True) k1,k2,k3,k4 = st.columns(4) k1.metric("Total", len(scored)) k2.metric("High", high) k3.metric("Medium", med) k4.metric("Low", low) level_filter = st.multiselect("Levels", ["High", "Medium", "Low"], default=["High", "Medium", "Low"], key="lvl_filter") q = st.text_input("Search title/snippet", key="score_search") view = [r for r in scored if r["level"] in level_filter and (not q or q.lower() in (r.get("snippet", '')).lower() or q.lower() in (r.get("title", '')).lower())] rows_html = [] for r in view: lvl = r["level"].lower() badge = f"{r['level']}" title = (r.get('title',''))[:120] expl_short = (r.get('explanation',''))[:180] url = r.get('url') or '' rows_html.append(f"{r['score']}{badge}{title}link{r['reliability']}{expl_short}") table_html = """
{rows}
ScoreLevelTitleURLReliab.Explanation (truncated)
""".format(rows="".join(rows_html)) st.markdown(table_html, unsafe_allow_html=True) col_rescore, col_full, col_export = st.columns([1,2,1]) with col_rescore: if st.button("Re-score", key="btn_rescore_now"): rescored = score_all_findings(st.session_state.get("dork_results", []), facts) st.session_state["scored_results"] = rescored st.success("Re-scored.") with col_full: with st.expander("Full Explanations"): for r in view: st.markdown(f"**{r.get('title','')}** — {r['level']} ({r['score']})\n\n{r.get('explanation','')}") with col_export: if st.button("Export Report (HTML)", key="btn_export_report_inline"): export_report(entity_type, entity_value, facts, scored) with tabs[7]: st.subheader("Entity Graph") facts = KnownFacts.from_session() scored = st.session_state.get("scored_results") or [] if scored: html = build_graph(scored, facts) if html: st.components.v1.html(html, height=600, scrolling=True) else: st.info("Install networkx & pyvis for graph visualization.") else: st.info("No scored findings yet.") with tabs[8]: st.subheader("Report Export") facts = KnownFacts.from_session() scored = st.session_state.get("scored_results") or [] if scored: export_report(entity_type, entity_value, facts, scored) else: st.info("Run and score findings to export a report.") with tabs[9]: st.subheader("Username Availability Probe") facts = KnownFacts.from_session() sample_users = facts.handles[:10] or [entity_value] if entity_type == "Username / Handle" else [] if not sample_users: st.info("Add handles in Known Facts or pick a username entity.") else: if st.button("Probe Platforms", key="btn_probe_users"): data = probe_usernames(sample_users) st.session_state["probe_results"] = data if pr := st.session_state.get("probe_results"): st.dataframe(pr, use_container_width=True) with tabs[10]: render_help_tab() # Floating chat widget render render_chat_widget(entity_type, entity_value) with st.expander("Methodology / Scoring Rubric", expanded=False): st.markdown(""" **Scoring Components** - Email (+25) / Name exact (+20) / Handle (+15) / Domain (+10) / IP (+10) / Org (+8) - Fuzzy name token (+8) / Co-occurrence (+10) - Source reliability High (+10) / Medium (+5) - Context alignment (1:+3 / 2:+6 / ≥3:+10) - Semantic similarity (0–20 scaled) if enabled **Levels:** High ≥70, Medium ≥40, else Low. """) with st.expander("Ethical Use Notice", expanded=False): st.markdown("Lawful OSINT only. No intrusion, auth bypass, or accessing non-public data. Respect platform ToS & privacy.") # --------------------------- # Chat Assistant # --------------------------- GUIDE_SYSTEM = ( "You are a noir-style seasoned OSINT investigator named 'The Analyst'. Speak like classic crime noir: terse, vivid metaphors, professional, never cheesy. " "Guide the user step-by-step in enumerating a digital entity using only ethical open sources. " "Each answer: <=150 words, 2-4 compact paragraphs or bullet fragments. Provide concrete next actions, pivot angles, and a light ethics reminder if user drifts. " "Avoid sensationalism. No illegal guidance. Occasionally finish with a brief noir tag line like 'That's the shape of the alley, kid.'" ) def _summarize_context(entity_type: str, entity_value: str) -> str: facts: KnownFacts = KnownFacts.from_session() scored = st.session_state.get("scored_results") or [] high_titles = [s.get("title") for s in scored if s.get("level") == "High"][:5] parts = [f"Entity: {entity_type}={entity_value}"] if facts.handles: parts.append(f"Handles:{len(facts.handles)}") if facts.emails: parts.append(f"Emails:{len(facts.emails)}") if facts.domains: parts.append(f"Domains:{len(facts.domains)}") if high_titles: parts.append("HighHits:" + ";".join(high_titles)) return " | ".join(parts) def _rule_based_reply(user_msg: str, entity_type: str, entity_value: str) -> str: msg = user_msg.lower() lines = [] ctx = _summarize_context(entity_type, entity_value) if any(k in msg for k in ["start", "hello", "hi", "first"]): lines.append("First we empty our pockets—handles, domains, emails. Solid identifiers become compass bearings.") if "dork" in msg or "search" in msg: lines.append("Open with wide footprint dorks. Then tighten: docs leaks, repo chatter, paste traces. Each query is a flashlight beam.") if "score" in msg or "confidence" in msg: lines.append("Confidence breathes when multiple facts collide in a clean source. Add precise emails or stable handles—re-score, watch the highs rise.") if "graph" in msg: lines.append("Graph shows the intersections. Nodes struck by multiple identifiers—those corners hide stories.") if "pivot" in msg or "next" in msg: lines.append("Pivot off unique anchors: a handle in a PDF, an email in a commit, a domain in a press note. Each pivot narrows the alley.") if not lines: lines.append("Playbook: 1) Lock facts 2) Advisor for 10 sharp dorks 3) Select & run 4) Score 5) Add new facts 6) Graph pivots 7) Export report.") lines.append(f"Context snapshot: {ctx}") lines.append("Stay clean—public sources only. That's the shape of the alley, kid.") return "\n\n".join(lines) def render_chat_widget(entity_type: str, entity_value: str): # Session setup st.session_state.setdefault("chat_history", []) st.session_state.setdefault("chat_open", True) open_flag = st.session_state["chat_open"] # Mini open button (when closed) if not open_flag: if st.button("🕵️", key="open_chat_button"): st.session_state["chat_open"] = True # Style the button to float st.markdown("""
""", unsafe_allow_html=True) return # Build chat window messages = st.session_state["chat_history"] # Render HTML shell st.markdown("
", unsafe_allow_html=True) # Header with close control c1, c2, c3 = st.columns([0.2, 0.65, 0.15]) with c1: st.markdown("
🕵️
", unsafe_allow_html=True) with c2: st.markdown("
Investigator
", unsafe_allow_html=True) with c3: if st.button("✕", key="close_chat_btn"): st.session_state["chat_open"] = False st.markdown("
", unsafe_allow_html=True) return # Messages area # Use an empty container to emulate scroll (Streamlit limitation) msg_container = st.container() with msg_container: if messages: for turn in messages[-18:]: st.markdown(f"

You: {turn['user']}

", unsafe_allow_html=True) st.markdown(f"

Inv: {turn['assistant']}

", unsafe_allow_html=True) else: st.markdown("

Need a lead? Ask me about dorks, scoring, or pivots.

", unsafe_allow_html=True) # Input form with st.form("chat_form", clear_on_submit=True): q = st.text_area("Message", key="chat_input_area", height=70, label_visibility="collapsed") col_a, col_b, col_c, col_d = st.columns(4) send = False with col_a: if st.form_submit_button("Send"): send = True with col_b: if st.form_submit_button("Dorks"): q = "What dorks should I run next?"; send = True with col_c: if st.form_submit_button("Confidence"): q = "How do I improve confidence now?"; send = True with col_d: if st.form_submit_button("Pivot"): q = "Give me a pivot strategy."; send = True if send and q.strip(): reply: Optional[str] = None if st.session_state.get("settings", {}).get("model") and os.getenv("HF_API_TOKEN"): convo = st.session_state["chat_history"][-6:] history_str = "\n".join([f"User: {h['user']}\nAssistant: {h['assistant']}" for h in convo if h.get('assistant')]) prompt = ( f"{GUIDE_SYSTEM}\nCurrentContext: {_summarize_context(entity_type, entity_value)}\n" + history_str + f"\nUser: {q}\nAssistant:") reply = _hf_infer(MODEL_ID_MAP.get(st.session_state["settings"]["model"], st.session_state["settings"]["model"]), prompt, max_new_tokens=190, temperature=0.35) if not reply: reply = _rule_based_reply(q, entity_type, entity_value) st.session_state["chat_history"].append({"user": q, "assistant": reply}) st.markdown("
Ethical OSINT only.🕵️‍♂️
", unsafe_allow_html=True) st.markdown("", unsafe_allow_html=True) if __name__ == "__main__": main()