Your Name
feat: UI improvements and error suppression - Enhanced dashboard and market pages with improved header buttons, logo, and currency symbol display - Stopped animated ticker - Removed pie chart legends - Added error suppressor for external service errors (SSE, Permissions-Policy warnings) - Improved header button prominence and icon appearance - Enhanced logo with glow effects and better design - Fixed currency symbol visibility in market tables
8b7b267
raw
history blame
6.74 kB
"""
Demonstration Script for All Collector Modules
This script demonstrates the usage of all collector modules and
provides a comprehensive overview of data collection capabilities.
"""
import asyncio
import json
from datetime import datetime
from typing import Dict, List, Any
# Import all collector functions
from collectors import (
collect_market_data,
collect_explorer_data,
collect_news_data,
collect_sentiment_data,
collect_onchain_data
)
def print_separator(title: str = ""):
"""Print a formatted separator line"""
if title:
print(f"\n{'='*70}")
print(f" {title}")
print(f"{'='*70}\n")
else:
print(f"{'='*70}\n")
def format_result_summary(result: Dict[str, Any]) -> str:
"""Format a single result for display"""
lines = []
lines.append(f"Provider: {result.get('provider', 'Unknown')}")
lines.append(f"Category: {result.get('category', 'Unknown')}")
lines.append(f"Success: {result.get('success', False)}")
if result.get('success'):
lines.append(f"Response Time: {result.get('response_time_ms', 0):.2f}ms")
staleness = result.get('staleness_minutes')
if staleness is not None:
lines.append(f"Data Staleness: {staleness:.2f} minutes")
# Add provider-specific info
if result.get('index_value'):
lines.append(f"Fear & Greed Index: {result['index_value']} ({result['index_classification']})")
if result.get('post_count'):
lines.append(f"Posts: {result['post_count']}")
if result.get('article_count'):
lines.append(f"Articles: {result['article_count']}")
if result.get('is_placeholder'):
lines.append("Status: PLACEHOLDER IMPLEMENTATION")
else:
lines.append(f"Error Type: {result.get('error_type', 'unknown')}")
lines.append(f"Error: {result.get('error', 'Unknown error')}")
return "\n".join(lines)
def print_category_summary(category: str, results: List[Dict[str, Any]]):
"""Print summary for a category of collectors"""
print_separator(f"{category.upper()}")
total = len(results)
successful = sum(1 for r in results if r.get('success', False))
print(f"Total Collectors: {total}")
print(f"Successful: {successful}")
print(f"Failed: {total - successful}")
print()
for i, result in enumerate(results, 1):
print(f"[{i}/{total}] {'-'*60}")
print(format_result_summary(result))
print()
async def collect_all_data() -> Dict[str, List[Dict[str, Any]]]:
"""
Collect data from all categories concurrently
Returns:
Dictionary with categories as keys and results as values
"""
print_separator("Starting Data Collection from All Sources")
print(f"Timestamp: {datetime.utcnow().isoformat()}Z\n")
# Run all collectors concurrently
print("Executing all collectors in parallel...")
market_results, explorer_results, news_results, sentiment_results, onchain_results = await asyncio.gather(
collect_market_data(),
collect_explorer_data(),
collect_news_data(),
collect_sentiment_data(),
collect_onchain_data(),
return_exceptions=True
)
# Handle any exceptions
def handle_exception(result, category):
if isinstance(result, Exception):
return [{
"provider": "Unknown",
"category": category,
"success": False,
"error": str(result),
"error_type": "exception"
}]
return result
return {
"market_data": handle_exception(market_results, "market_data"),
"explorers": handle_exception(explorer_results, "blockchain_explorers"),
"news": handle_exception(news_results, "news"),
"sentiment": handle_exception(sentiment_results, "sentiment"),
"onchain": handle_exception(onchain_results, "onchain_analytics")
}
async def main():
"""Main demonstration function"""
print_separator("Cryptocurrency Data Collector - Comprehensive Demo")
# Collect all data
all_results = await collect_all_data()
# Print results by category
print_category_summary("Market Data Collection", all_results["market_data"])
print_category_summary("Blockchain Explorer Data", all_results["explorers"])
print_category_summary("News Data Collection", all_results["news"])
print_category_summary("Sentiment Data Collection", all_results["sentiment"])
print_category_summary("On-Chain Analytics Data", all_results["onchain"])
# Overall statistics
print_separator("Overall Collection Statistics")
total_collectors = sum(len(results) for results in all_results.values())
total_successful = sum(
sum(1 for r in results if r.get('success', False))
for results in all_results.values()
)
total_failed = total_collectors - total_successful
# Calculate average response time for successful calls
response_times = [
r.get('response_time_ms', 0)
for results in all_results.values()
for r in results
if r.get('success', False) and 'response_time_ms' in r
]
avg_response_time = sum(response_times) / len(response_times) if response_times else 0
print(f"Total Collectors Run: {total_collectors}")
print(f"Successful: {total_successful} ({total_successful/total_collectors*100:.1f}%)")
print(f"Failed: {total_failed} ({total_failed/total_collectors*100:.1f}%)")
print(f"Average Response Time: {avg_response_time:.2f}ms")
print()
# Category breakdown
print("By Category:")
for category, results in all_results.items():
successful = sum(1 for r in results if r.get('success', False))
total = len(results)
print(f" {category:20} {successful}/{total} successful")
print_separator()
# Save results to file
output_file = f"collector_results_{datetime.utcnow().strftime('%Y%m%d_%H%M%S')}.json"
try:
with open(output_file, 'w') as f:
json.dump(all_results, f, indent=2, default=str)
print(f"Results saved to: {output_file}")
except Exception as e:
print(f"Failed to save results: {e}")
print_separator("Demo Complete")
return all_results
if __name__ == "__main__":
# Run the demonstration
results = asyncio.run(main())
# Exit with appropriate code
total_collectors = sum(len(r) for r in results.values())
total_successful = sum(
sum(1 for item in r if item.get('success', False))
for r in results.values()
)
# Exit with 0 if at least 50% successful, else 1
exit(0 if total_successful >= total_collectors / 2 else 1)