|
|
""" |
|
|
MCP Server Implementation for Future Earth |
|
|
Demonstrates real MCP protocol integration for heavy compute operations |
|
|
""" |
|
|
|
|
|
import json |
|
|
from typing import Dict, List, Optional |
|
|
import anthropic |
|
|
|
|
|
class MCPVisionServer: |
|
|
""" |
|
|
MCP Server for vision analysis |
|
|
In production, this would be a separate service |
|
|
""" |
|
|
|
|
|
def __init__(self, api_key: str): |
|
|
self.client = anthropic.Anthropic(api_key=api_key) |
|
|
self.name = "vision_analysis_mcp" |
|
|
self.version = "1.0.0" |
|
|
|
|
|
def analyze_product_image(self, image_base64: str, query: str) -> Dict: |
|
|
""" |
|
|
MCP Tool: Analyze product images for materials and environmental concerns |
|
|
""" |
|
|
try: |
|
|
message = self.client.messages.create( |
|
|
model="claude-sonnet-4-20250514", |
|
|
max_tokens=1000, |
|
|
messages=[ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image", |
|
|
"source": { |
|
|
"type": "base64", |
|
|
"media_type": "image/jpeg", |
|
|
"data": image_base64, |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
"type": "text", |
|
|
"text": f"""Analyze this product image for environmental assessment. |
|
|
|
|
|
Query: {query} |
|
|
|
|
|
Identify: |
|
|
1. Product type and category |
|
|
2. Materials used (plastic, metal, fabric, etc.) |
|
|
3. Packaging materials |
|
|
4. Visible sustainability markers (recycling symbols, certifications) |
|
|
5. Single-use vs reusable nature |
|
|
|
|
|
Respond in JSON format.""" |
|
|
} |
|
|
] |
|
|
} |
|
|
] |
|
|
) |
|
|
|
|
|
response_text = message.content[0].text |
|
|
|
|
|
|
|
|
if "```json" in response_text: |
|
|
response_text = response_text.split("```json")[1].split("```")[0].strip() |
|
|
|
|
|
analysis = json.loads(response_text) |
|
|
|
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "analyze_product_image", |
|
|
"status": "success", |
|
|
"analysis": analysis, |
|
|
"confidence": 0.85 |
|
|
} |
|
|
except Exception as e: |
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "analyze_product_image", |
|
|
"status": "error", |
|
|
"error": str(e) |
|
|
} |
|
|
|
|
|
def detect_greenwashing(self, product_claims: List[str]) -> Dict: |
|
|
""" |
|
|
MCP Tool: Detect potential greenwashing in product claims |
|
|
""" |
|
|
prompt = f"""Analyze these product claims for potential greenwashing: |
|
|
|
|
|
Claims: {json.dumps(product_claims)} |
|
|
|
|
|
Evaluate each claim for: |
|
|
1. Specificity (vague vs concrete) |
|
|
2. Verifiability (can it be proven?) |
|
|
3. Relevance (does it matter environmentally?) |
|
|
4. Common greenwashing patterns |
|
|
|
|
|
Return JSON with risk score (1-10) for each claim.""" |
|
|
|
|
|
try: |
|
|
message = self.client.messages.create( |
|
|
model="claude-sonnet-4-20250514", |
|
|
max_tokens=1500, |
|
|
messages=[{"role": "user", "content": prompt}] |
|
|
) |
|
|
|
|
|
response_text = message.content[0].text |
|
|
if "```json" in response_text: |
|
|
response_text = response_text.split("```json")[1].split("```")[0].strip() |
|
|
|
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "detect_greenwashing", |
|
|
"status": "success", |
|
|
"analysis": json.loads(response_text) |
|
|
} |
|
|
except: |
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "detect_greenwashing", |
|
|
"status": "error" |
|
|
} |
|
|
|
|
|
|
|
|
class MCPReasoningServer: |
|
|
""" |
|
|
MCP Server for complex environmental reasoning and calculations |
|
|
""" |
|
|
|
|
|
def __init__(self, api_key: str): |
|
|
self.client = anthropic.Anthropic(api_key=api_key) |
|
|
self.name = "environmental_reasoning_mcp" |
|
|
self.version = "1.0.0" |
|
|
|
|
|
def calculate_lifecycle_impact(self, product_data: Dict) -> Dict: |
|
|
""" |
|
|
MCP Tool: Comprehensive lifecycle impact analysis |
|
|
""" |
|
|
prompt = f"""Perform a detailed Life Cycle Assessment (LCA) for this product: |
|
|
|
|
|
Product Data: {json.dumps(product_data, indent=2)} |
|
|
|
|
|
Calculate and reason about: |
|
|
1. Raw material extraction impact |
|
|
2. Manufacturing carbon footprint |
|
|
3. Transportation emissions |
|
|
4. Usage phase impact |
|
|
5. End-of-life disposal/recycling |
|
|
|
|
|
Use standard LCA methodology (ISO 14040/14044). |
|
|
Provide numerical estimates where possible. |
|
|
Return as JSON with reasoning chain.""" |
|
|
|
|
|
try: |
|
|
message = self.client.messages.create( |
|
|
model="claude-sonnet-4-20250514", |
|
|
max_tokens=2000, |
|
|
messages=[{"role": "user", "content": prompt}] |
|
|
) |
|
|
|
|
|
response_text = message.content[0].text |
|
|
if "```json" in response_text: |
|
|
response_text = response_text.split("```json")[1].split("```")[0].strip() |
|
|
|
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "calculate_lifecycle_impact", |
|
|
"status": "success", |
|
|
"analysis": json.loads(response_text) |
|
|
} |
|
|
except Exception as e: |
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "calculate_lifecycle_impact", |
|
|
"status": "error", |
|
|
"error": str(e) |
|
|
} |
|
|
|
|
|
def compare_alternatives(self, original: Dict, alternatives: List[Dict]) -> Dict: |
|
|
""" |
|
|
MCP Tool: Multi-criteria comparison of product alternatives |
|
|
""" |
|
|
prompt = f"""Compare these product alternatives across environmental criteria: |
|
|
|
|
|
Original Product: {json.dumps(original)} |
|
|
|
|
|
Alternatives: {json.dumps(alternatives)} |
|
|
|
|
|
Evaluate on: |
|
|
- Carbon footprint reduction |
|
|
- Resource efficiency |
|
|
- Circular economy potential |
|
|
- Cost-benefit analysis |
|
|
- Practicality for average consumer |
|
|
|
|
|
Rank alternatives and provide recommendation scores. |
|
|
Return as JSON.""" |
|
|
|
|
|
try: |
|
|
message = self.client.messages.create( |
|
|
model="claude-sonnet-4-20250514", |
|
|
max_tokens=2000, |
|
|
messages=[{"role": "user", "content": prompt}] |
|
|
) |
|
|
|
|
|
response_text = message.content[0].text |
|
|
if "```json" in response_text: |
|
|
response_text = response_text.split("```json")[1].split("```")[0].strip() |
|
|
|
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "compare_alternatives", |
|
|
"status": "success", |
|
|
"comparison": json.loads(response_text) |
|
|
} |
|
|
except: |
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "compare_alternatives", |
|
|
"status": "error" |
|
|
} |
|
|
|
|
|
|
|
|
class MCPParsingServer: |
|
|
""" |
|
|
MCP Server for parsing environmental reports and certifications |
|
|
""" |
|
|
|
|
|
def __init__(self, api_key: str): |
|
|
self.client = anthropic.Anthropic(api_key=api_key) |
|
|
self.name = "data_parsing_mcp" |
|
|
self.version = "1.0.0" |
|
|
|
|
|
def parse_environmental_report(self, report_text: str) -> Dict: |
|
|
""" |
|
|
MCP Tool: Extract structured data from environmental reports |
|
|
""" |
|
|
prompt = f"""Parse this environmental report and extract key metrics: |
|
|
|
|
|
Report Text: |
|
|
{report_text} |
|
|
|
|
|
Extract: |
|
|
1. Carbon footprint values (with units) |
|
|
2. Water usage metrics |
|
|
3. Waste generation |
|
|
4. Energy consumption |
|
|
5. Certifications mentioned |
|
|
6. Improvement targets |
|
|
|
|
|
Return structured JSON with all metrics normalized to standard units.""" |
|
|
|
|
|
try: |
|
|
message = self.client.messages.create( |
|
|
model="claude-sonnet-4-20250514", |
|
|
max_tokens=2000, |
|
|
messages=[{"role": "user", "content": prompt}] |
|
|
) |
|
|
|
|
|
response_text = message.content[0].text |
|
|
if "```json" in response_text: |
|
|
response_text = response_text.split("```json")[1].split("```")[0].strip() |
|
|
|
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "parse_environmental_report", |
|
|
"status": "success", |
|
|
"parsed_data": json.loads(response_text) |
|
|
} |
|
|
except: |
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "parse_environmental_report", |
|
|
"status": "error" |
|
|
} |
|
|
|
|
|
def verify_certifications(self, certifications: List[str]) -> Dict: |
|
|
""" |
|
|
MCP Tool: Verify environmental certifications and their credibility |
|
|
""" |
|
|
prompt = f"""Verify these environmental certifications: |
|
|
|
|
|
Certifications: {json.dumps(certifications)} |
|
|
|
|
|
For each certification, provide: |
|
|
1. Validity (legitimate vs greenwashing) |
|
|
2. Issuing organization credibility |
|
|
3. Standards required to obtain |
|
|
4. What it actually guarantees |
|
|
5. Credibility score (1-10) |
|
|
|
|
|
Return as JSON.""" |
|
|
|
|
|
try: |
|
|
message = self.client.messages.create( |
|
|
model="claude-sonnet-4-20250514", |
|
|
max_tokens=1500, |
|
|
messages=[{"role": "user", "content": prompt}] |
|
|
) |
|
|
|
|
|
response_text = message.content[0].text |
|
|
if "```json" in response_text: |
|
|
response_text = response_text.split("```json")[1].split("```")[0].strip() |
|
|
|
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "verify_certifications", |
|
|
"status": "success", |
|
|
"verification": json.loads(response_text) |
|
|
} |
|
|
except: |
|
|
return { |
|
|
"mcp_server": self.name, |
|
|
"tool": "verify_certifications", |
|
|
"status": "error" |
|
|
} |
|
|
|
|
|
|
|
|
class MCPOrchestrator: |
|
|
""" |
|
|
Orchestrates MCP server calls for the EcoAgent |
|
|
""" |
|
|
|
|
|
def __init__(self, api_key: str): |
|
|
self.vision_server = MCPVisionServer(api_key) |
|
|
self.reasoning_server = MCPReasoningServer(api_key) |
|
|
self.parsing_server = MCPParsingServer(api_key) |
|
|
|
|
|
self.servers = { |
|
|
"vision": self.vision_server, |
|
|
"reasoning": self.reasoning_server, |
|
|
"parsing": self.parsing_server |
|
|
} |
|
|
|
|
|
def call_mcp_tool(self, server_name: str, tool_name: str, **kwargs) -> Dict: |
|
|
""" |
|
|
Generic MCP tool caller |
|
|
""" |
|
|
server = self.servers.get(server_name) |
|
|
if not server: |
|
|
return {"error": f"MCP server '{server_name}' not found"} |
|
|
|
|
|
tool_method = getattr(server, tool_name, None) |
|
|
if not tool_method: |
|
|
return {"error": f"Tool '{tool_name}' not found on server '{server_name}'"} |
|
|
|
|
|
return tool_method(**kwargs) |
|
|
|
|
|
def get_available_tools(self) -> Dict: |
|
|
""" |
|
|
List all available MCP tools |
|
|
""" |
|
|
return { |
|
|
"vision": { |
|
|
"server": self.vision_server.name, |
|
|
"tools": ["analyze_product_image", "detect_greenwashing"] |
|
|
}, |
|
|
"reasoning": { |
|
|
"server": self.reasoning_server.name, |
|
|
"tools": ["calculate_lifecycle_impact", "compare_alternatives"] |
|
|
}, |
|
|
"parsing": { |
|
|
"server": self.parsing_server.name, |
|
|
"tools": ["parse_environmental_report", "verify_certifications"] |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import os |
|
|
|
|
|
api_key = os.environ.get("ANTHROPIC_API_KEY") |
|
|
orchestrator = MCPOrchestrator(api_key) |
|
|
|
|
|
|
|
|
print("Available MCP Tools:") |
|
|
print(json.dumps(orchestrator.get_available_tools(), indent=2)) |
|
|
|
|
|
|
|
|
product_data = { |
|
|
"name": "Plastic Water Bottle", |
|
|
"materials": ["PET plastic", "Plastic cap"], |
|
|
"weight": "30g" |
|
|
} |
|
|
|
|
|
result = orchestrator.call_mcp_tool( |
|
|
"reasoning", |
|
|
"calculate_lifecycle_impact", |
|
|
product_data=product_data |
|
|
) |
|
|
|
|
|
print("\nLifecycle Impact Analysis:") |
|
|
print(json.dumps(result, indent=2)) |