Spaces:
Runtime error
Runtime error
XiaoyiYangRIT
commited on
Commit
·
62b60d1
1
Parent(s):
741cc94
Update some files
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import math
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModel, AutoProcessor
|
| 5 |
from decord import VideoReader, cpu
|
| 6 |
from PIL import Image
|
|
@@ -17,10 +18,18 @@ transform = Compose([
|
|
| 17 |
])
|
| 18 |
|
| 19 |
# === 模型加载 ===
|
|
|
|
| 20 |
MODEL_NAME = "OpenGVLab/InternVL3-14B"
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def split_model(model_path):
|
| 26 |
from transformers import AutoConfig
|
|
@@ -47,10 +56,10 @@ def split_model(model_path):
|
|
| 47 |
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
| 48 |
return device_map
|
| 49 |
|
| 50 |
-
device_map = split_model(
|
| 51 |
|
| 52 |
model = AutoModel.from_pretrained(
|
| 53 |
-
|
| 54 |
torch_dtype=torch.bfloat16,
|
| 55 |
low_cpu_mem_usage=True,
|
| 56 |
use_flash_attn=True,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import math
|
| 4 |
+
import os
|
| 5 |
from transformers import AutoTokenizer, AutoModel, AutoProcessor
|
| 6 |
from decord import VideoReader, cpu
|
| 7 |
from PIL import Image
|
|
|
|
| 18 |
])
|
| 19 |
|
| 20 |
# === 模型加载 ===
|
| 21 |
+
PERSISTENT_DIR = "/data/internvl3_model" # 持久路径
|
| 22 |
MODEL_NAME = "OpenGVLab/InternVL3-14B"
|
| 23 |
|
| 24 |
+
# 如果第一次运行:下载模型并缓存到 /data
|
| 25 |
+
if not os.path.exists(PERSISTENT_DIR):
|
| 26 |
+
print("Downloading model to persistent storage...")
|
| 27 |
+
from transformers import snapshot_download
|
| 28 |
+
snapshot_download(repo_id=MODEL_NAME, local_dir=PERSISTENT_DIR, trust_remote_code=True)
|
| 29 |
+
|
| 30 |
+
# 模型加载(从本地)
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(PERSISTENT_DIR, trust_remote_code=True)
|
| 32 |
+
processor = AutoProcessor.from_pretrained(PERSISTENT_DIR, trust_remote_code=True)
|
| 33 |
|
| 34 |
def split_model(model_path):
|
| 35 |
from transformers import AutoConfig
|
|
|
|
| 56 |
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
| 57 |
return device_map
|
| 58 |
|
| 59 |
+
device_map = split_model(PERSISTENT_DIR)
|
| 60 |
|
| 61 |
model = AutoModel.from_pretrained(
|
| 62 |
+
PERSISTENT_DIR,
|
| 63 |
torch_dtype=torch.bfloat16,
|
| 64 |
low_cpu_mem_usage=True,
|
| 65 |
use_flash_attn=True,
|