Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py for Gradio App on Hugging Face Spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
import random
|
| 6 |
+
import time
|
| 7 |
+
import json
|
| 8 |
+
from typing import List, Dict, Tuple, Optional
|
| 9 |
+
|
| 10 |
+
# --- Configuration ---
|
| 11 |
+
MODEL_NAME = "Qwen/Qwen3-VL-4B-Instruct-FP8"
|
| 12 |
+
# For Hugging Face Spaces, loading the model once here is common.
|
| 13 |
+
# Performance on CPU will be slower.
|
| 14 |
+
print("Loading model...")
|
| 15 |
+
try:
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
MODEL_NAME,
|
| 19 |
+
torch_dtype=torch.float16, # Use float16 for FP8 model if supported, or bfloat16
|
| 20 |
+
device_map="auto", # Automatically map to available devices (CPU or GPU)
|
| 21 |
+
trust_remote_code=True
|
| 22 |
+
).eval() # Set to evaluation mode
|
| 23 |
+
print("Model loaded successfully.")
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Failed to load model: {e}")
|
| 26 |
+
model = None
|
| 27 |
+
tokenizer = None
|
| 28 |
+
|
| 29 |
+
# --- Simulated Cost Database ---
|
| 30 |
+
COSTS = {
|
| 31 |
+
"ask_question": 10.0,
|
| 32 |
+
"physical_exam": 25.0,
|
| 33 |
+
"order_cbc": 50.0,
|
| 34 |
+
"order_xray": 150.0,
|
| 35 |
+
"administer_med": 30.0,
|
| 36 |
+
"end_case": 0.0,
|
| 37 |
+
"start_case": 0.0 # Cost for starting is typically 0
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
# --- State Management Class ---
|
| 41 |
+
class MedicalSimulatorState:
|
| 42 |
+
def __init__(self):
|
| 43 |
+
self.patient_profile: Optional[Dict] = None
|
| 44 |
+
self.chat_history: List[Tuple[Optional[str], Optional[str]]] = [] # Gradio chat format: [(user_msg, bot_msg), ...]
|
| 45 |
+
self.vitals: Dict[str, float] = {"HR": 72.0, "BP_Sys": 120.0, "BP_Dia": 80.0, "Temp": 98.6, "O2_Sat": 98.0}
|
| 46 |
+
self.total_cost: float = 0.0
|
| 47 |
+
self.is_case_active: bool = False
|
| 48 |
+
self.underlying_diagnosis: str = ""
|
| 49 |
+
self.ordered_tests: Dict[str, str] = {} # e.g., {"cbc": "pending", "xray": "result..."}
|
| 50 |
+
# Add more state variables as needed
|
| 51 |
+
|
| 52 |
+
# --- Core AI Interaction Function ---
|
| 53 |
+
def get_ai_response(user_input: str, history: List[Tuple[Optional[str], Optional[str]]], patient_profile: Dict, underlying_diagnosis: str) -> str:
|
| 54 |
+
if not model or not tokenizer:
|
| 55 |
+
return "Error: AI model is not loaded."
|
| 56 |
+
|
| 57 |
+
# Construct a prompt for the AI based on history and patient profile
|
| 58 |
+
history_str = "\n".join([f"{'User' if h[0] else 'System/AI'}: {h[0] or h[1]}" for h in history])
|
| 59 |
+
context = f"Patient Profile: Name: {patient_profile['name']}, Age: {patient_profile['age']}, Gender: {patient_profile['gender']}, Chief Complaint: {patient_profile['chief_complaint']}, History: {patient_profile['history']}, Medications: {patient_profile['medications']}, Allergies: {patient_profile['allergies']}, Social History: {patient_profile['social_history']}, Financial Status: {patient_profile['financial_status']}, Code Status: {patient_profile['code_status']}\nCurrent Chat History:\n{history_str}\nUser Action/Question: {user_input}\n"
|
| 60 |
+
prompt = f"<|system|>You are an AI patient in a medical simulation. Role-play as the patient described in the profile. Be consistent with their history, demographics, and potential complaints. Respond to the user's input (which could be a question, exam instruction, or order). Your responses should simulate realistic patient dialogue and reactions, including potential anxiety or concerns. Do not reveal the secret diagnosis '{underlying_diagnosis}' directly, but your responses should be consistent with having that condition. Respond as if you are the patient speaking.<|user|>{context}<|assistant|>"
|
| 61 |
+
|
| 62 |
+
try:
|
| 63 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 64 |
+
if inputs["input_ids"].shape[1] > 32768: # Check for model max length
|
| 65 |
+
return "Error: Input prompt is too long for the model."
|
| 66 |
+
|
| 67 |
+
# Generate response
|
| 68 |
+
generate_ids = model.generate(
|
| 69 |
+
inputs.input_ids,
|
| 70 |
+
max_new_tokens=512, # Limit generated tokens
|
| 71 |
+
do_sample=True,
|
| 72 |
+
temperature=0.7,
|
| 73 |
+
top_p=0.9,
|
| 74 |
+
pad_token_id=tokenizer.eos_token_id
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Decode the generated response
|
| 78 |
+
response_text = tokenizer.decode(generate_ids[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 79 |
+
return response_text.strip()
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
print(f"Error during AI generation: {e}")
|
| 83 |
+
return f"An error occurred while processing the AI response: {e}"
|
| 84 |
+
|
| 85 |
+
# --- Tool Functions (Modify State) ---
|
| 86 |
+
def start_case(case_type: str, state: MedicalSimulatorState) -> Tuple[MedicalSimulatorState, List[Tuple[Optional[str], Optional[str]]], str, str]:
|
| 87 |
+
# --- Generate Patient Profile (Simplified Example) ---
|
| 88 |
+
names = ["John Smith", "Emily Johnson", "Michael Brown", "Sarah Davis"]
|
| 89 |
+
chief_complaints = {
|
| 90 |
+
"General": ["Chest pain", "Shortness of breath", "Abdominal pain"],
|
| 91 |
+
"Pediatric": ["Fever", "Cough", "Ear ache"],
|
| 92 |
+
"Psychiatry": ["Feeling anxious", "Difficulty sleeping", "Low mood"],
|
| 93 |
+
"Dual Diagnosis": ["Chest pain and feels anxious", "Abdominal pain after drinking"]
|
| 94 |
+
}
|
| 95 |
+
complaint_options = chief_complaints.get(case_type, chief_complaints["General"])
|
| 96 |
+
name = random.choice(names)
|
| 97 |
+
age = random.randint(18, 80) if case_type != "Pediatric" else random.randint(0, 17)
|
| 98 |
+
gender = random.choice(["Male", "Female"])
|
| 99 |
+
chief_complaint = random.choice(complaint_options)
|
| 100 |
+
# Define underlying diagnosis based on complaint or case type
|
| 101 |
+
diag_map = {
|
| 102 |
+
"Chest pain": "Acute Myocardial Infarction",
|
| 103 |
+
"Shortness of breath": "Pneumonia",
|
| 104 |
+
"Abdominal pain": "Appendicitis",
|
| 105 |
+
"Fever": "Viral Infection",
|
| 106 |
+
"Cough": "Bronchitis",
|
| 107 |
+
"Ear ache": "Otitis Media",
|
| 108 |
+
"Feeling anxious": "Generalized Anxiety Disorder",
|
| 109 |
+
"Difficulty sleeping": "Insomnia",
|
| 110 |
+
"Low mood": "Major Depressive Disorder",
|
| 111 |
+
"Chest pain and feels anxious": "Acute MI with Anxiety",
|
| 112 |
+
"Abdominal pain after drinking": "Alcoholic Gastritis with Substance Use Disorder"
|
| 113 |
+
}
|
| 114 |
+
underlying_diagnosis = diag_map.get(chief_complaint, "Unknown Condition")
|
| 115 |
+
|
| 116 |
+
patient = {
|
| 117 |
+
"name": name,
|
| 118 |
+
"age": age,
|
| 119 |
+
"gender": gender,
|
| 120 |
+
"chief_complaint": chief_complaint,
|
| 121 |
+
"history": "Patient history relevant to complaint.",
|
| 122 |
+
"medications": "Current medications.",
|
| 123 |
+
"allergies": "Known allergies (e.g., Penicillin).",
|
| 124 |
+
"social_history": "Social history details.",
|
| 125 |
+
"financial_status": "Insurance status.",
|
| 126 |
+
"code_status": "Full Code",
|
| 127 |
+
"language": "English"
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
# Reset state
|
| 131 |
+
state.patient_profile = patient
|
| 132 |
+
state.chat_history = [("System", "New Case Started."), ("AI Patient", f"Hi, I'm {patient['name']}. I've been having {patient['chief_complaint']}.")]
|
| 133 |
+
state.vitals = {"HR": 72.0, "BP_Sys": 120.0, "BP_Dia": 80.0, "Temp": 98.6, "O2_Sat": 98.0}
|
| 134 |
+
state.total_cost = 0.0
|
| 135 |
+
state.is_case_active = True
|
| 136 |
+
state.underlying_diagnosis = underlying_diagnosis
|
| 137 |
+
state.ordered_tests = {}
|
| 138 |
+
|
| 139 |
+
profile_str = "\n".join([f"{k.replace('_', ' ').title()}: {v}" for k, v in patient.items()])
|
| 140 |
+
return state, state.chat_history, f"${state.total_cost:.2f}", profile_str
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def handle_chat(user_input: str, history: List[Tuple[Optional[str], Optional[str]]], state: MedicalSimulatorState) -> Tuple[List[Tuple[Optional[str], Optional[str]]], str]:
|
| 144 |
+
if not state.is_case_active or not user_input.strip():
|
| 145 |
+
return history, f"${state.total_cost:.2f}"
|
| 146 |
+
|
| 147 |
+
# Add user message to history
|
| 148 |
+
history.append((user_input, None))
|
| 149 |
+
|
| 150 |
+
# Get AI response
|
| 151 |
+
ai_response = get_ai_response(user_input, history[:-1], state.patient_profile, state.underlying_diagnosis) # Pass history without the user's new message yet
|
| 152 |
+
|
| 153 |
+
# Add AI response to history
|
| 154 |
+
history[-1] = (user_input, ai_response) # Update the last entry with the AI's response
|
| 155 |
+
|
| 156 |
+
return history, f"${state.total_cost:.2f}" # Cost doesn't change here, just return current
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def use_tool(tool_name: str, state: MedicalSimulatorState) -> Tuple[MedicalSimulatorState, List[Tuple[Optional[str], Optional[str]]], str]:
|
| 160 |
+
if not state.is_case_active:
|
| 161 |
+
return state, state.chat_history, f"${state.total_cost:.2f}"
|
| 162 |
+
|
| 163 |
+
cost = COSTS.get(tool_name, 0.0)
|
| 164 |
+
state.total_cost += cost
|
| 165 |
+
|
| 166 |
+
if tool_name == "ask_question":
|
| 167 |
+
ai_response = get_ai_response("The user asks a general question to gather more history.", state.chat_history, state.patient_profile, state.underlying_diagnosis)
|
| 168 |
+
state.chat_history.append(("System", f"[Action: {tool_name}, Cost: ${cost:.2f}]"))
|
| 169 |
+
state.chat_history.append(("AI Patient", ai_response))
|
| 170 |
+
|
| 171 |
+
elif tool_name == "order_cbc":
|
| 172 |
+
state.chat_history.append(("System", f"[Action: {tool_name}, Cost: ${cost:.2f}]"))
|
| 173 |
+
state.chat_history.append(("Lab", "CBC Ordered. Result pending..."))
|
| 174 |
+
# Simulate result appearing after a delay or another action
|
| 175 |
+
# For now, add a simple result shortly after
|
| 176 |
+
time.sleep(0.5) # Simulate processing delay
|
| 177 |
+
state.chat_history.append(("Lab", "CBC Result: WBC slightly elevated, otherwise unremarkable."))
|
| 178 |
+
|
| 179 |
+
elif tool_name == "administer_med":
|
| 180 |
+
med_name = "Medication X" # Simplified, could take input
|
| 181 |
+
state.chat_history.append(("System", f"[Action: {tool_name} - {med_name}, Cost: ${cost:.2f}]"))
|
| 182 |
+
# Check for allergies here in a real app
|
| 183 |
+
state.chat_history.append(("AI Patient", f"Okay, I took the {med_name}."))
|
| 184 |
+
|
| 185 |
+
elif tool_name == "physical_exam":
|
| 186 |
+
state.chat_history.append(("System", f"[Action: {tool_name}, Cost: ${cost:.2f}]"))
|
| 187 |
+
state.chat_history.append(("System", "Physical Exam Performed. Findings noted."))
|
| 188 |
+
|
| 189 |
+
elif tool_name == "order_xray":
|
| 190 |
+
state.chat_history.append(("System", f"[Action: {tool_name}, Cost: ${cost:.2f}]"))
|
| 191 |
+
state.chat_history.append(("Imaging", "X-Ray Ordered. Result pending..."))
|
| 192 |
+
# Placeholder for image result (could be a URL or base64 string)
|
| 193 |
+
time.sleep(0.5) # Simulate processing delay
|
| 194 |
+
state.chat_history.append(("Imaging", "Chest X-Ray Result: Normal lung fields, no acute findings. (Placeholder Image)"))
|
| 195 |
+
|
| 196 |
+
# Add other tools as needed...
|
| 197 |
+
|
| 198 |
+
return state, state.chat_history, f"${state.total_cost:.2f}"
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def end_case(state: MedicalSimulatorState) -> Tuple[MedicalSimulatorState, List[Tuple[Optional[str], Optional[str]]], str, str]:
|
| 202 |
+
if not state.is_case_active:
|
| 203 |
+
# Return current state if no case is active
|
| 204 |
+
profile_str = "\n".join([f"{k.replace('_', ' ').title()}: {v}" for k, v in (state.patient_profile or {}).items()])
|
| 205 |
+
return state, state.chat_history, f"${state.total_cost:.2f}", profile_str
|
| 206 |
+
|
| 207 |
+
state.chat_history.append(("System", "Case Ended by User."))
|
| 208 |
+
state.is_case_active = False
|
| 209 |
+
|
| 210 |
+
# In a full implementation, trigger the evaluation logic here
|
| 211 |
+
# evaluation = run_evaluation(state) # Placeholder
|
| 212 |
+
# state.chat_history.append(("System", f"Evaluation: {evaluation}")) # Add evaluation to chat or separate component
|
| 213 |
+
|
| 214 |
+
profile_str = "\n".join([f"{k.replace('_', ' ').title()}: {v}" for k, v in (state.patient_profile or {}).items()])
|
| 215 |
+
return state, state.chat_history, f"${state.total_cost:.2f}", profile_str
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
# --- Gradio Interface ---
|
| 219 |
+
with gr.Blocks(title="Advanced Medical Simulator") as demo:
|
| 220 |
+
# State component to hold the simulator state across interactions
|
| 221 |
+
state = gr.State(lambda: MedicalSimulatorState())
|
| 222 |
+
|
| 223 |
+
gr.Markdown("# Advanced Medical Simulator")
|
| 224 |
+
|
| 225 |
+
with gr.Row():
|
| 226 |
+
with gr.Column(scale=2):
|
| 227 |
+
# Chat Interface
|
| 228 |
+
chatbot = gr.Chatbot(label="Patient Interaction", height=400, bubble_full_width=False)
|
| 229 |
+
with gr.Row():
|
| 230 |
+
user_input = gr.Textbox(label="Your Action / Question", placeholder="Type your action or question here...", scale=4)
|
| 231 |
+
submit_btn = gr.Button("Submit", scale=1)
|
| 232 |
+
|
| 233 |
+
with gr.Column(scale=1):
|
| 234 |
+
# Patient Chart / Info
|
| 235 |
+
patient_chart = gr.Markdown(label="Patient Chart", value="Click 'Start New Case' to begin.")
|
| 236 |
+
cost_display = gr.Textbox(label="Total Cost", value="$0.00", interactive=False)
|
| 237 |
+
|
| 238 |
+
with gr.Row():
|
| 239 |
+
# Tool Panel
|
| 240 |
+
with gr.Column():
|
| 241 |
+
gr.Markdown("### Tools")
|
| 242 |
+
with gr.Row():
|
| 243 |
+
ask_btn = gr.Button("Ask Question ($10)")
|
| 244 |
+
exam_btn = gr.Button("Physical Exam ($25)")
|
| 245 |
+
with gr.Row():
|
| 246 |
+
cbc_btn = gr.Button("Order CBC ($50)")
|
| 247 |
+
xray_btn = gr.Button("Order X-Ray ($150)")
|
| 248 |
+
with gr.Row():
|
| 249 |
+
med_btn = gr.Button("Administer Med ($30)")
|
| 250 |
+
end_btn = gr.Button("End Case", variant="stop") # Red button for ending
|
| 251 |
+
|
| 252 |
+
with gr.Row():
|
| 253 |
+
# Case Controls
|
| 254 |
+
start_case_btn = gr.Button("Start New Case (General)")
|
| 255 |
+
case_type_dropdown = gr.Dropdown(["General", "Psychiatry", "Pediatric", "Dual Diagnosis"], label="Case Type", value="General")
|
| 256 |
+
|
| 257 |
+
# Event Handling
|
| 258 |
+
start_case_btn.click(
|
| 259 |
+
fn=start_case,
|
| 260 |
+
inputs=[case_type_dropdown, state],
|
| 261 |
+
outputs=[state, chatbot, cost_display, patient_chart]
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
submit_btn.click(
|
| 265 |
+
fn=handle_chat,
|
| 266 |
+
inputs=[user_input, chatbot, state],
|
| 267 |
+
outputs=[chatbot, cost_display]
|
| 268 |
+
).then(
|
| 269 |
+
fn=lambda: "", # Clear the input textbox after submission
|
| 270 |
+
inputs=[],
|
| 271 |
+
outputs=[user_input]
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
ask_btn.click(fn=lambda s: use_tool("ask_question", s), inputs=[state], outputs=[state, chatbot, cost_display])
|
| 275 |
+
exam_btn.click(fn=lambda s: use_tool("physical_exam", s), inputs=[state], outputs=[state, chatbot, cost_display])
|
| 276 |
+
cbc_btn.click(fn=lambda s: use_tool("order_cbc", s), inputs=[state], outputs=[state, chatbot, cost_display])
|
| 277 |
+
xray_btn.click(fn=lambda s: use_tool("order_xray", s), inputs=[state], outputs=[state, chatbot, cost_display])
|
| 278 |
+
med_btn.click(fn=lambda s: use_tool("administer_med", s), inputs=[state], outputs=[state, chatbot, cost_display])
|
| 279 |
+
end_btn.click(fn=end_case, inputs=[state], outputs=[state, chatbot, cost_display, patient_chart])
|
| 280 |
+
|
| 281 |
+
# Launch the app
|
| 282 |
+
# For Hugging Face Spaces, Gradio handles the launch.
|
| 283 |
+
demo.launch()
|