File size: 17,351 Bytes
9599c8e 33ff5b3 9599c8e 33ff5b3 4224302 dbb0ed0 92820c1 7c75ddd 33ff5b3 9599c8e 33ff5b3 7c75ddd 33ff5b3 9599c8e 7c75ddd 61fcbc1 9599c8e ca12908 9599c8e 33ff5b3 572dfb0 33ff5b3 4224302 dbb0ed0 4224302 33ff5b3 7c75ddd b9816b5 7c75ddd 33ff5b3 7701af4 33ff5b3 7c75ddd 33ff5b3 6d6218a 9599c8e 33ff5b3 7701af4 33ff5b3 aea1032 7701af4 6d6218a 7c75ddd 6d6218a 7c75ddd 6d6218a 7c75ddd 6d6218a 7c75ddd 425571a 6d6218a 425571a 7c75ddd 6d6218a 7c75ddd 6d6218a 7c75ddd 9599c8e 33ff5b3 7c75ddd 33ff5b3 9599c8e 33ff5b3 7701af4 7c75ddd 33ff5b3 9599c8e 4224302 92820c1 4224302 33ff5b3 dbb0ed0 33ff5b3 9599c8e 33ff5b3 6d6218a 92820c1 33ff5b3 92820c1 9599c8e 33ff5b3 9599c8e 33ff5b3 9599c8e 33ff5b3 92820c1 7701af4 9599c8e 33ff5b3 9599c8e 33ff5b3 92820c1 33ff5b3 dbb0ed0 33ff5b3 9599c8e 33ff5b3 92820c1 33ff5b3 92820c1 33ff5b3 7701af4 33ff5b3 7c75ddd 33ff5b3 a2dde7c 7c75ddd 33ff5b3 7c75ddd dbb0ed0 7c75ddd 33ff5b3 9599c8e 7c75ddd 4224302 7c75ddd 9599c8e 7c75ddd 1cb2e39 7c75ddd 33ff5b3 7c75ddd 33ff5b3 7701af4 33ff5b3 dbb0ed0 7701af4 572dfb0 0122482 7c75ddd 33ff5b3 dbb0ed0 bb40b17 dbb0ed0 7c75ddd 61fcbc1 33ff5b3 7c75ddd 33ff5b3 7c75ddd 33ff5b3 7c75ddd 33ff5b3 072b2c1 61fcbc1 33ff5b3 7c75ddd 33ff5b3 4224302 33ff5b3 9599c8e 33ff5b3 7c75ddd aea1032 7c75ddd aea1032 33ff5b3 7c75ddd 9599c8e 7701af4 9599c8e 33ff5b3 9599c8e 7c75ddd 92820c1 425571a 7c75ddd 425571a 92820c1 7c75ddd 425571a 33ff5b3 6d6218a 33ff5b3 92820c1 9599c8e bb43fa2 33ff5b3 92820c1 4224302 33ff5b3 7c75ddd 33ff5b3 572dfb0 9599c8e 33ff5b3 7701af4 9599c8e 33ff5b3 9599c8e 33ff5b3 7c75ddd 33ff5b3 9599c8e 33ff5b3 7701af4 33ff5b3 7701af4 92820c1 7701af4 33ff5b3 92820c1 9599c8e 33ff5b3 9599c8e 7701af4 9599c8e 33ff5b3 7c75ddd 33ff5b3 7701af4 4224302 887625f 4224302 db13e7d 887625f 7701af4 b9816b5 887625f 7701af4 887625f 7701af4 7c75ddd 887625f 7c75ddd 7701af4 7c75ddd a2dde7c 887625f 7701af4 7c75ddd 7701af4 33ff5b3 7c75ddd 7701af4 33ff5b3 7701af4 33ff5b3 887625f 7701af4 33ff5b3 7701af4 887625f 7701af4 33ff5b3 7701af4 33ff5b3 7c75ddd 7701af4 572dfb0 7701af4 33ff5b3 7701af4 33ff5b3 7701af4 9599c8e 33ff5b3 af9bf03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import os
import json
import logging
import threading
import uuid
import time
import sys
import gc
import multiprocessing
import shutil
import math
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from itertools import chain
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
import transformers
import datasets
from dotenv import load_dotenv
from datasets import load_dataset, get_dataset_config_names, IterableDataset
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, TrainerCallback, AutoConfig, DataCollatorForLanguageModeling
from huggingface_hub import login, whoami, create_repo, upload_folder
import spaces
try:
load_dotenv()
except:
pass
transformers.logging.set_verbosity_error()
datasets.logging.set_verbosity_error()
logging.getLogger("transformers").setLevel(logging.CRITICAL)
logging.getLogger("datasets").setLevel(logging.CRITICAL)
logging.getLogger("torch").setLevel(logging.CRITICAL)
logging.basicConfig(level=logging.CRITICAL, stream=sys.stderr)
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
JOBS = {}
def activation_quant(x):
scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
y = (x * scale).round().clamp_(-128, 127) / scale
return y + x - x.detach()
def weight_quant(w):
scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
u = (w * scale).round().clamp_(-1, 1) / scale
return u + w - w.detach()
class BitLinear(nn.Linear):
def forward(self, x):
target_dtype = x.dtype
w = self.weight.to(target_dtype)
w_quant = weight_quant(w).to(target_dtype)
x_quant = activation_quant(x).to(target_dtype)
if self.bias is not None:
b = self.bias.to(target_dtype)
else:
b = None
return F.linear(x_quant, w_quant, b)
def convert_to_bitnet(model, copy_weights=False):
for name, module in model.named_children():
if isinstance(module, nn.Linear):
bit_linear = BitLinear(module.in_features, module.out_features, module.bias is not None)
if copy_weights:
bit_linear.weight.data = module.weight.data.clone()
if module.bias is not None:
bit_linear.bias.data = module.bias.data.clone()
setattr(model, name, bit_linear)
else:
convert_to_bitnet(module, copy_weights=copy_weights)
class JobStatus:
def __init__(self):
self.id = str(uuid.uuid4())
self.status = "INITIALIZING"
self.progress = 0.0
self.logs = []
self.result = None
self.error = None
self.created_at = datetime.now().strftime("%H:%M:%S")
self.repo_url = None
def add_log(self, message):
timestamp = datetime.now().strftime("%H:%M:%S")
self.logs.append(f"[{timestamp}] {message}")
def set_progress(self, val, msg=None):
self.progress = val
if msg:
self.add_log(msg)
class CustomTrainerCallback(TrainerCallback):
def __init__(self, job_id, hf_token, repo_id):
self.job_id = job_id
self.hf_token = hf_token
self.repo_id = repo_id
def on_step_end(self, args, state, control, **kwargs):
if self.job_id in JOBS:
job = JOBS[self.job_id]
if state.max_steps > 0:
prog = state.global_step / state.max_steps
job.progress = 0.1 + (prog * 0.8)
if state.global_step % 1 == 0:
loss = state.log_history[-1].get('loss', 'N/A') if state.log_history else '...'
job.add_log(f"Training Step {state.global_step}/{state.max_steps} | Loss: {loss}")
return control
def on_save(self, args, state, control, **kwargs):
if self.job_id in JOBS:
job = JOBS[self.job_id]
step = state.global_step
ckpt_name = f"checkpoint-{step}"
ckpt_path = os.path.join(args.output_dir, ckpt_name)
job.add_log(f"System: 100-Step Snapshot saved ({ckpt_name})")
def _upload_bg():
try:
upload_folder(
folder_path=ckpt_path,
path_in_repo=".",
repo_id=self.repo_id,
token=self.hf_token,
commit_message=f"Live Checkpoint Step {step}"
)
job.add_log(f"Cloud: Synced Checkpoint {step} to Root")
except:
pass
threading.Thread(target=_upload_bg, daemon=True).start()
return control
@spaces.GPU(duration=300)
def background_train_task(job_id, hf_token, model_name, new_repo_name,
train_steps, learning_rate, batch_size, datasets_text,
reasoning_mode, c_conf, c_tok, c_gen):
job = JOBS[job_id]
job.status = "RUNNING"
job.add_log("System: initializing BitNet Scratch Protocol...")
try:
if not hf_token.startswith("hf_"):
raise ValueError("Invalid Token")
os.environ["WANDB_DISABLED"] = "true"
os.environ["HF_TOKEN"] = hf_token
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
os.environ["TOKENIZERS_PARALLELISM"] = "true"
login(token=hf_token)
try:
username = whoami()["name"]
full_repo_id = f"{username}/{new_repo_name}"
create_repo(full_repo_id, token=hf_token, exist_ok=True)
job.add_log(f"Auth: Verified {username} -> {full_repo_id}")
except:
raise Exception("Auth Failed")
if not hasattr(torch, 'xla'):
class DummyXLA:
def __getattr__(self, name):
return lambda *args, **kwargs: None
torch.xla = DummyXLA()
raw_items = datasets_text.replace('\n', ',').split(',')
dataset_list = [item.strip() for item in raw_items if item.strip()]
if reasoning_mode:
job.add_log("Config: Reasoning Injection Active")
dataset_list.extend(["gsm8k", "openai/gsm8k"])
def load_single(ds_name, cfg):
try:
ds = load_dataset(ds_name, cfg if cfg else "main", split="train", streaming=True, trust_remote_code=False)
try:
next(iter(ds))
return ds
except:
return None
except:
return None
streams = []
job.set_progress(0.05, "Data: Parallel Stream Connect...")
cpu_count = multiprocessing.cpu_count()
with ThreadPoolExecutor(max_workers=cpu_count * 2) as executor:
futures = []
for ds_name in dataset_list:
futures.append(executor.submit(load_single, ds_name, None))
for future in as_completed(futures):
res = future.result()
if res:
streams.append(res)
if not streams:
raise Exception("No Data Sources")
job.set_progress(0.1, f"Data: {len(streams)} Streams Linked")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side="left", add_eos_token=True, add_bos_token=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
def process_stream_generator():
iterator = chain.from_iterable(streams)
batch_buffer = []
for item in iterator:
try:
text = str(item.get("text", item.get("content", str(item))))
if len(text) < 5: continue
batch_buffer.append(text)
if len(batch_buffer) >= 100:
encoded_batch = tokenizer(batch_buffer, truncation=True, max_length=2048, padding=False)
for input_ids in encoded_batch["input_ids"]:
yield {"input_ids": input_ids}
batch_buffer = []
except:
continue
job.set_progress(0.15, "Model: Initializing Architecture & Converting to BitNet...")
torch.cuda.empty_cache()
gc.collect()
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
original_model = AutoModelForCausalLM.from_config(
config,
trust_remote_code=True,
)
convert_to_bitnet(original_model, copy_weights=False)
model_size = sum(t.numel() for t in original_model.parameters())
job.add_log(f"Model Size: {model_size/1000**2:.1f}M Parameters (1.58-bit)")
output_dir = f"checkpoints/{job_id}"
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=int(batch_size),
gradient_accumulation_steps=4,
max_steps=int(train_steps),
learning_rate=learning_rate,
optim="adamw_torch_fused" if torch.cuda.is_available() else "adamw_torch",
logging_steps=1,
save_strategy="steps",
save_steps=100,
save_total_limit=1,
report_to="none",
fp16=True if torch.cuda.is_available() else False,
disable_tqdm=True,
dataloader_num_workers=4,
dataloader_pin_memory=True,
gradient_checkpointing=True,
torch_compile=False,
lr_scheduler_type="cosine",
warmup_ratio=0.1
)
dataset_iterable = IterableDataset.from_generator(process_stream_generator)
trainer = Trainer(
model=original_model,
tokenizer=tokenizer,
train_dataset=dataset_iterable,
args=training_args,
data_collator=data_collator,
callbacks=[CustomTrainerCallback(job_id, hf_token, full_repo_id)]
)
job.set_progress(0.2, "Training: BitNet Gradient Descent Initiated...")
trainer.train()
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
job.set_progress(0.9, "Processing: Finalizing Artifacts...")
del original_model
torch.cuda.empty_cache()
gc.collect()
def inject_json(content, fname):
if content and content.strip():
try:
data = json.loads(content)
file_path = os.path.join(output_dir, fname)
if os.path.exists(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
try:
existing_data = json.load(f)
existing_data.update(data)
data = existing_data
except:
pass
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2)
job.add_log(f"Config: Overwritten {fname} with user settings")
except:
pass
inject_json(c_conf, "config.json")
inject_json(c_tok, "tokenizer_config.json")
inject_json(c_gen, "generation_config.json")
job.set_progress(0.95, "Network: Uploading Final BitNet Model...")
upload_folder(
folder_path=output_dir,
path_in_repo=".",
repo_id=full_repo_id,
token=hf_token,
commit_message="BitNet Scratch Trained Model"
)
job.repo_url = f"https://huggingface.co/{full_repo_id}"
job.status = "COMPLETED"
job.set_progress(1.0, "System: Operation Finalized")
except Exception as e:
job.status = "FAILED"
job.error = str(e)
job.add_log(f"FATAL ERROR: {str(e)}")
torch.cuda.empty_cache()
def start_training_wrapper(hf_token, model_name, new_repo_name,
train_steps, learning_rate, batch_size, datasets_text,
reasoning_mode, c_conf, c_tok, c_gen):
if not hf_token or not model_name:
return None, gr.update(selected="launch_tab")
new_job = JobStatus()
JOBS[new_job.id] = new_job
thread = threading.Thread(
target=background_train_task,
args=(new_job.id, hf_token, model_name, new_repo_name,
train_steps, learning_rate, batch_size, datasets_text, reasoning_mode, c_conf, c_tok, c_gen)
)
thread.daemon = True
thread.start()
return new_job.id, gr.update(selected="monitor_tab")
def get_job_update(job_id):
if not job_id:
return "Waiting...", "", 0, "", gr.update(visible=False)
if job_id not in JOBS:
return "Not Found", "", 0, "", gr.update(visible=False)
job = JOBS[job_id]
log_text = "\n".join(job.logs)
result_comp = gr.update(visible=False)
if job.status == "COMPLETED" and job.repo_url:
result_comp = gr.update(visible=True, value=f"✅ Full Model Published: {job.repo_url}")
return job.status, job.created_at, job.progress, log_text, result_comp
def load_from_url(request: gr.Request):
try:
params = request.query_params
job_id = params.get("job_id")
if job_id:
return gr.update(selected="monitor_tab"), job_id
except:
pass
return gr.update(selected="launch_tab"), ""
with gr.Blocks(title="Nucleus Enterprise") as demo:
with gr.Column():
gr.Markdown("# ⚛️ NUCLEUS ENTERPRISE")
gr.Markdown("Autonomous LLM Foundry | V10.0 BitNet Edition")
with gr.Tabs() as main_tabs:
with gr.TabItem("🚀 LAUNCHPAD", id="launch_tab"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
hf_token = gr.Textbox(label="HuggingFace Token", type="password", value=os.getenv("HF_TOKEN", ""))
model_name = gr.Textbox(label="Architecture Config Source", value="Qwen/Qwen2.5-0.5B")
repo_name = gr.Textbox(label="Output Repository", value="nucleus-bitnet-v1")
datasets = gr.Textbox(label="Datasets (CSV)", value="Salesforce/fineweb_deduplicated", lines=3)
reasoning = gr.Checkbox(label="Inject Reasoning (CoT/Math)", value=False)
with gr.Column(scale=1):
steps = gr.Number(label="Steps", value=100)
lr = gr.Number(label="Learning Rate", value=1e-4)
batch = gr.Number(label="Batch Size", value=1)
with gr.Accordion("Advanced Config", open=False):
c_conf = gr.Code(label="config.json", language="json")
c_tok = gr.Code(label="tokenizer_config.json", language="json")
c_gen = gr.Code(label="generation_config.json", language="json")
btn_launch = gr.Button("INITIALIZE BITNET TRAINING", variant="primary", size="lg")
with gr.TabItem("📡 TELEMETRY", id="monitor_tab"):
with gr.Row():
job_id_input = gr.Textbox(label="Active Job ID", interactive=True)
btn_refresh = gr.Button("Refresh Stream")
with gr.Row():
status_out = gr.Textbox(label="Status", interactive=False)
time_out = gr.Textbox(label="Start Time", interactive=False)
progress_out = gr.Slider(label="Progress", minimum=0, maximum=1)
final_link = gr.Markdown(visible=False)
logs_out = gr.Code(label="Real-time Kernel Logs", language="shell", interactive=False, lines=15)
timer = gr.Timer(2000, active=False)
demo.load(load_from_url, None, [main_tabs, job_id_input]).then(lambda: gr.Timer(active=True), None, timer)
btn_launch.click(
start_training_wrapper,
inputs=[hf_token, model_name, repo_name, steps, lr, batch, datasets, reasoning, c_conf, c_tok, c_gen],
outputs=[job_id_input, main_tabs]
).then(
None, [job_id_input], None,
js="(id) => { if (id) { const url = new URL(window.location); url.searchParams.set('job_id', id); window.history.pushState({}, '', url); } return id; }"
).then(
lambda: gr.Timer(active=True), None, timer
)
btn_refresh.click(get_job_update, job_id_input, [status_out, time_out, progress_out, logs_out, final_link])
timer.tick(get_job_update, job_id_input, [status_out, time_out, progress_out, logs_out, final_link])
if __name__ == "__main__":
demo.launch(ssr_mode=False) |